/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_bridges.hxx" #include #include #include #include "bridges/cpp_uno/shared/bridge.hxx" #include "bridges/cpp_uno/shared/cppinterfaceproxy.hxx" #include "bridges/cpp_uno/shared/types.hxx" #include "bridges/cpp_uno/shared/vtablefactory.hxx" #include "share.hxx" using namespace ::com::sun::star::uno; namespace { //================================================================================================== static typelib_TypeClass cpp2uno_call( bridges::cpp_uno::shared::CppInterfaceProxy * pThis, const typelib_TypeDescription * pMemberTypeDescr, typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return sal_Int32 nParams, typelib_MethodParameter * pParams, void ** gpreg, void ** fpreg, void ** ovrflw, sal_Int64 * pRegisterReturn /* space for register return */ ) { // gpreg: [ret *], this, [gpr params] // fpreg: [fpr params] // ovrflw: [gpr or fpr params (space for entire parameter list in structure format properly aligned)] // return typelib_TypeDescription * pReturnTypeDescr = 0; if (pReturnTypeRef) TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); void * pUnoReturn = 0; void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need sal_Int32 ngpreg = 0; sal_Int32 nfpreg = 0; if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) pUnoReturn = pRegisterReturn; // direct way for simple types else // complex return via ptr (pCppReturn) { pCppReturn = *gpreg; ngpreg++; ++ovrflw; pUnoReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pCppReturn); // direct way } } // pop this ngpreg++; ++ovrflw; // after handling optional return pointer and "this" // make use of the space that is allocated to store all parameters in the callers stack // by comying the proper registers filled with parameters to that space char * pCppStack = (char *)ovrflw; sal_Int32 nPos; for ( nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; if (rParam.bOut) { if (ngpreg < 8) { *(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++]; } pCppStack += sizeof (sal_Int32); } else { switch (rParam.pTypeRef->eTypeClass) { case typelib_TypeClass_FLOAT: if (nfpreg < 13) { *(float *)pCppStack = ((double *)fpreg)[nfpreg++]; } pCppStack += sizeof (float); ngpreg += 1; break; case typelib_TypeClass_DOUBLE: if (nfpreg < 13) { *(double *)pCppStack = ((double *)fpreg)[nfpreg++]; } pCppStack += sizeof (double); ngpreg += 2; break; case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_HYPER: if (ngpreg < 8) { *(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++]; } pCppStack += sizeof (sal_Int32); // fall through on purpose default: if (ngpreg < 8) { *(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++]; } pCppStack += sizeof (sal_Int32); } } } // now the stack has all of the paramters stored in it ready to be processed // so we are ready to build the uno call stack pCppStack = (char *)ovrflw; // stack space OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" ); // parameters void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams ); void ** pCppArgs = pUnoArgs + nParams; // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pUnoArgs + (2 * nParams)); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams)); sal_Int32 nTempIndizes = 0; for ( nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) // value { switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: pCppArgs[nPos] = pCppStack +3; pUnoArgs[nPos] = pCppStack +3; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: pCppArgs[nPos] = pCppStack +2; pUnoArgs[nPos] = pCppStack +2; break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_DOUBLE: pCppArgs[nPos] = pCppStack; pUnoArgs[nPos] = pCppStack; pCppStack += sizeof(sal_Int32); // extra long (two regs) break; default: pCppArgs[nPos] = pCppStack; pUnoArgs[nPos] = pCppStack; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { pCppArgs[nPos] = *(void **)pCppStack; if (! rParam.bIn) // is pure out { // uno out is unconstructed mem! pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ); pTempIndizes[nTempIndizes] = nPos; // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ), *(void **)pCppStack, pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { pUnoArgs[nPos] = *(void **)pCppStack; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } } pCppStack += sizeof(sal_Int32); // standard parameter length } // ExceptionHolder uno_Any aUnoExc; // Any will be constructed by callee uno_Any * pUnoExc = &aUnoExc; // invoke uno dispatch call (*pThis->getUnoI()->pDispatcher)( pThis->getUnoI(), pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc ); // in case an exception occured... if (pUnoExc) { // destruct temporary in/inout params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; if (pParams[nIndex].bIn) // is in/inout => was constructed uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], 0 ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); CPPU_CURRENT_NAMESPACE::raiseException( &aUnoExc, pThis->getBridge()->getUno2Cpp() ); // has to destruct the any // is here for dummy return typelib_TypeClass_VOID; } else // else no exception occured... { // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bOut) // inout/out { // convert and assign uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); } // destroy temp uno param uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return if (pCppReturn) // has complex return { if (pUnoReturn != pCppReturn) // needs reconversion { uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr, pThis->getBridge()->getUno2Cpp() ); // destroy temp uno return uno_destructData( pUnoReturn, pReturnTypeDescr, 0 ); } // complex return ptr is set to return reg *(void **)pRegisterReturn = pCppReturn; } if (pReturnTypeDescr) { typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass; TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); return eRet; } else return typelib_TypeClass_VOID; } } //================================================================================================== static typelib_TypeClass cpp_mediate( sal_Int32 nFunctionIndex, sal_Int32 nVtableOffset, void ** gpreg, void ** fpreg, void ** ovrflw, sal_Int64 * pRegisterReturn /* space for register return */ ) { OSL_ENSURE( sizeof(sal_Int32)==sizeof(void *), "### unexpected!" ); // gpreg: [ret *], this, [other gpr params] // fpreg: [fpr params] // ovrflw: [gpr or fpr params (in space allocated for all params properly aligned)] void * pThis; if( nFunctionIndex & 0x80000000 ) { nFunctionIndex &= 0x7fffffff; pThis = gpreg[1]; } else { pThis = gpreg[0]; } pThis = static_cast< char * >(pThis) - nVtableOffset; bridges::cpp_uno::shared::CppInterfaceProxy * pCppI = bridges::cpp_uno::shared::CppInterfaceProxy::castInterfaceToProxy(pThis); typelib_InterfaceTypeDescription * pTypeDescr = pCppI->getTypeDescr(); OSL_ENSURE( nFunctionIndex < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" ); if (nFunctionIndex >= pTypeDescr->nMapFunctionIndexToMemberIndex) { throw RuntimeException( rtl::OUString::createFromAscii("illegal vtable index!"), (XInterface *)pThis ); } // determine called method sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nFunctionIndex]; OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### illegal member index!" ); TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] ); typelib_TypeClass eRet; switch (aMemberDescr.get()->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nFunctionIndex) { // is GET method eRet = cpp2uno_call( pCppI, aMemberDescr.get(), ((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef, 0, 0, // no params gpreg, fpreg, ovrflw, pRegisterReturn ); } else { // is SET method typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; eRet = cpp2uno_call( pCppI, aMemberDescr.get(), 0, // indicates void return 1, &aParam, gpreg, fpreg, ovrflw, pRegisterReturn ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { // is METHOD switch (nFunctionIndex) { case 1: // acquire() pCppI->acquireProxy(); // non virtual call! eRet = typelib_TypeClass_VOID; break; case 2: // release() pCppI->releaseProxy(); // non virtual call! eRet = typelib_TypeClass_VOID; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( gpreg[2] )->getTypeLibType() ); if (pTD) { XInterface * pInterface = 0; (*pCppI->getBridge()->getCppEnv()->getRegisteredInterface)( pCppI->getBridge()->getCppEnv(), (void **)&pInterface, pCppI->getOid().pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( gpreg[0] ), &pInterface, pTD, cpp_acquire ); pInterface->release(); TYPELIB_DANGER_RELEASE( pTD ); *(void **)pRegisterReturn = gpreg[0]; eRet = typelib_TypeClass_ANY; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: eRet = cpp2uno_call( pCppI, aMemberDescr.get(), ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams, ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams, gpreg, fpreg, ovrflw, pRegisterReturn ); } break; } default: { throw RuntimeException( rtl::OUString::createFromAscii("no member description found!"), (XInterface *)pThis ); // is here for dummy eRet = typelib_TypeClass_VOID; } } return eRet; } //================================================================================================== /** * is called on incoming vtable calls * (called by asm snippets) */ static void cpp_vtable_call( int nFunctionIndex, int nVtableOffset, void** gpregptr, void** fpregptr, void** ovrflw) { sal_Int32 gpreg[8]; double fpreg[13]; // FIXME: why are we restoring the volatile ctr register here sal_Int32 ctrsave = ((sal_Int32*)gpregptr)[-1]; memcpy( gpreg, gpregptr, 32); memcpy( fpreg, fpregptr, 104); volatile long nRegReturn[2]; // sal_Bool bComplex = nFunctionIndex & 0x80000000 ? sal_True : sal_False; typelib_TypeClass aType = cpp_mediate( nFunctionIndex, nVtableOffset, (void**)gpreg, (void**)fpreg, ovrflw, (sal_Int64*)nRegReturn ); // FIXME: why are we restoring the volatile ctr register here // FIXME: and why are we putting back the values for r4, r5, and r6 as well // FIXME: this makes no sense to me, all of these registers are volatile! __asm__( "lwz r4, %0\n\t" "mtctr r4\n\t" "lwz r4, %1\n\t" "lwz r5, %2\n\t" "lwz r6, %3\n\t" : : "m"(ctrsave), "m"(gpreg[1]), "m"(gpreg[2]), "m"(gpreg[3]) ); switch( aType ) { // move return value into register space // (will be loaded by machine code snippet) case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: __asm__( "lbz r3,%0\n\t" : : "m"(nRegReturn[0]) ); break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: __asm__( "lhz r3,%0\n\t" : : "m"(nRegReturn[0]) ); break; case typelib_TypeClass_FLOAT: __asm__( "lfs f1,%0\n\t" : : "m" (*((float*)nRegReturn)) ); break; case typelib_TypeClass_DOUBLE: __asm__( "lfd f1,%0\n\t" : : "m" (*((double*)nRegReturn)) ); break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: __asm__( "lwz r4,%0\n\t" : : "m"(nRegReturn[1]) ); // fall through default: __asm__( "lwz r3,%0\n\t" : : "m"(nRegReturn[0]) ); break; } } int const codeSnippetSize = 136; unsigned char * codeSnippet( unsigned char * code, sal_Int32 functionIndex, sal_Int32 vtableOffset, bool simpleRetType ) { if (! simpleRetType ) functionIndex |= 0x80000000; // OSL_ASSERT( sizeof (long) == 4 ); // FIXME: why are we leaving an 8k gap in the stack here // FIXME: is this to allow room for signal handling frames? // FIXME: seems like overkill here but this is what was done for Mac OSX for gcc2 // FIXME: also why no saving of the non-volatile CR pieces here, to be safe // FIXME: we probably should /* generate this code */ // # so first save gpr 3 to gpr 10 (aligned to 4) // stw r3, -8000(r1) // stw r4, -7996(r1) // stw r5, -7992(r1) // stw r6, -7988(r1) // stw r7, -7984(r1) // stw r8, -7980(r1) // stw r9, -7976(r1) // stw r10,-7972(r1) // # next save fpr 1 to fpr 13 (aligned to 8) // stfd f1, -7968(r1) // stfd f2, -7960(r1) // stfd f3, -7952(r1) // stfd f4, -7944(r1) // stfd f5, -7936(r1) // stfd f6, -7928(r1) // stfd f7, -7920(r1) // stfd f8, -7912(r1) // stfd f9, -7904(r1) // stfd f10,-7896(r1) // stfd f11,-7888(r1) // stfd f12,-7880(r1) // stfd f13,-7872(r1) // FIXME: ctr is volatile, while are we saving it and not CR? // mfctr r3 // stw r3, -8004(r1) // # now here is where cpp_vtable_call must go // lis r3,0xdead // ori r3,r3,0xbeef // mtctr r3 // # now load up the functionIndex number // lis r3, 0xdead // ori r3,r3,0xbeef // # now load up the vtableOffset // lis r4, 0xdead // ori r4,r4,0xbeef // #now load up the pointer to the saved gpr registers // addi r5,r1,-8000 // #now load up the pointer to the saved fpr registers // addi r6,r1,-7968 // #now load up the pointer to the overflow call stack // addi r7,r1,24 # frame pointer plus 24 // bctr unsigned long * p = (unsigned long *) code; * p++ = 0x9061e0c0; * p++ = 0x9081e0c4; * p++ = 0x90a1e0c8; * p++ = 0x90c1e0cc; * p++ = 0x90e1e0d0; * p++ = 0x9101e0d4; * p++ = 0x9121e0d8; * p++ = 0x9141e0dc; * p++ = 0xd821e0e0; * p++ = 0xd841e0e8; * p++ = 0xd861e0f0; * p++ = 0xd881e0f8; * p++ = 0xd8a1e100; * p++ = 0xd8c1e108; * p++ = 0xd8e1e110; * p++ = 0xd901e118; * p++ = 0xd921e120; * p++ = 0xd941e128; * p++ = 0xd961e130; * p++ = 0xd981e138; * p++ = 0xd9a1e140; * p++ = 0x7c6902a6; * p++ = 0x9061e0bc; * p++ = 0x3c600000 | (((unsigned long)cpp_vtable_call) >> 16); * p++ = 0x60630000 | (((unsigned long)cpp_vtable_call) & 0x0000FFFF); * p++ = 0x7c6903a6; * p++ = 0x3c600000 | (((unsigned long)functionIndex) >> 16); * p++ = 0x60630000 | (((unsigned long)functionIndex) & 0x0000FFFF); * p++ = 0x3c800000 | (((unsigned long)vtableOffset) >> 16); * p++ = 0x60840000 | (((unsigned long)vtableOffset) & 0x0000FFFF); * p++ = 0x38a1e0c0; * p++ = 0x38c1e0e0; * p++ = 0x38e10018; * p++ = 0x4e800420; return (code + codeSnippetSize); } } void bridges::cpp_uno::shared::VtableFactory::flushCode(unsigned char const * bptr, unsigned char const * eptr) { int const lineSize = 32; for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) { __asm__ volatile ("dcbst 0, %0" : : "r"(p) : "memory"); } __asm__ volatile ("sync" : : : "memory"); for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) { __asm__ volatile ("icbi 0, %0" : : "r"(p) : "memory"); } __asm__ volatile ("isync" : : : "memory"); } struct bridges::cpp_uno::shared::VtableFactory::Slot { void * fn; }; bridges::cpp_uno::shared::VtableFactory::Slot * bridges::cpp_uno::shared::VtableFactory::mapBlockToVtable(void * block) { return static_cast< Slot * >(block) + 2; } sal_Size bridges::cpp_uno::shared::VtableFactory::getBlockSize( sal_Int32 slotCount) { return (slotCount + 2) * sizeof (Slot) + slotCount * codeSnippetSize; } bridges::cpp_uno::shared::VtableFactory::Slot * bridges::cpp_uno::shared::VtableFactory::initializeBlock( void * block, sal_Int32 slotCount) { Slot * slots = mapBlockToVtable(block); slots[-2].fn = 0; slots[-1].fn = 0; return slots + slotCount; } unsigned char * bridges::cpp_uno::shared::VtableFactory::addLocalFunctions( Slot ** slots, unsigned char * code, typelib_InterfaceTypeDescription const * type, sal_Int32 functionOffset, sal_Int32 functionCount, sal_Int32 vtableOffset) { (*slots) -= functionCount; Slot * s = *slots; // fprintf(stderr, "in addLocalFunctions functionOffset is %x\n",functionOffset); // fprintf(stderr, "in addLocalFunctions vtableOffset is %x\n",vtableOffset); // fflush(stderr); for (sal_Int32 i = 0; i < type->nMembers; ++i) { typelib_TypeDescription * member = 0; TYPELIB_DANGER_GET(&member, type->ppMembers[i]); OSL_ASSERT(member != 0); switch (member->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: // Getter: (s++)->fn = code; code = codeSnippet( code, functionOffset++, vtableOffset, bridges::cpp_uno::shared::isSimpleType( reinterpret_cast< typelib_InterfaceAttributeTypeDescription * >( member)->pAttributeTypeRef)); // Setter: if (!reinterpret_cast< typelib_InterfaceAttributeTypeDescription * >( member)->bReadOnly) { (s++)->fn = code; code = codeSnippet(code, functionOffset++, vtableOffset, true); } break; case typelib_TypeClass_INTERFACE_METHOD: (s++)->fn = code; code = codeSnippet( code, functionOffset++, vtableOffset, bridges::cpp_uno::shared::isSimpleType( reinterpret_cast< typelib_InterfaceMethodTypeDescription * >( member)->pReturnTypeRef)); break; default: OSL_ASSERT(false); break; } TYPELIB_DANGER_RELEASE(member); } return code; }