/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_svx.hxx" #include <svx/svdoedge.hxx> #include <svx/xpool.hxx> #include <svx/xpoly.hxx> #include <svx/svdattrx.hxx> #include <svx/svdpool.hxx> #include <svx/svdmodel.hxx> #include <svx/svdpage.hxx> #include <svx/svdpagv.hxx> #include <svx/svdview.hxx> #include <svx/svddrag.hxx> #include <svx/svddrgv.hxx> #include "svddrgm1.hxx" #include <svx/svdhdl.hxx> #include <svx/svdtrans.hxx> #include <svx/svdetc.hxx> #include "svx/svdglob.hxx" // StringCache #include "svx/svdstr.hrc" // Objektname #include <svl/style.hxx> #include <svl/smplhint.hxx> #include <editeng/eeitem.hxx> #include "svdoimp.hxx" #include <svx/sdr/properties/connectorproperties.hxx> #include <svx/sdr/contact/viewcontactofsdredgeobj.hxx> #include <basegfx/polygon/b2dpolygon.hxx> #include <basegfx/polygon/b2dpolygontools.hxx> #include <basegfx/matrix/b2dhommatrix.hxx> #include <svx/sdrhittesthelper.hxx> //////////////////////////////////////////////////////////////////////////////////////////////////// SdrObjConnection::~SdrObjConnection() { } void SdrObjConnection::ResetVars() { pObj=NULL; nConId=0; nXDist=0; nYDist=0; bBestConn=sal_True; bBestVertex=sal_True; bXDistOvr=sal_False; bYDistOvr=sal_False; bAutoVertex=sal_False; bAutoCorner=sal_False; } FASTBOOL SdrObjConnection::TakeGluePoint(SdrGluePoint& rGP, FASTBOOL bSetAbsPos) const { FASTBOOL bRet=sal_False; if (pObj!=NULL) { // Ein Obj muss schon angedockt sein! if (bAutoVertex) { rGP=pObj->GetVertexGluePoint(nConId); bRet=sal_True; } else if (bAutoCorner) { rGP=pObj->GetCornerGluePoint(nConId); bRet=sal_True; } else { const SdrGluePointList* pGPL=pObj->GetGluePointList(); if (pGPL!=NULL) { sal_uInt16 nNum=pGPL->FindGluePoint(nConId); if (nNum!=SDRGLUEPOINT_NOTFOUND) { rGP=(*pGPL)[nNum]; bRet=sal_True; } } } } if (bRet && bSetAbsPos) { Point aPt(rGP.GetAbsolutePos(*pObj)); aPt+=aObjOfs; rGP.SetPos(aPt); } return bRet; } Point& SdrEdgeInfoRec::ImpGetLineVersatzPoint(SdrEdgeLineCode eLineCode) { switch (eLineCode) { case OBJ1LINE2 : return aObj1Line2; case OBJ1LINE3 : return aObj1Line3; case OBJ2LINE2 : return aObj2Line2; case OBJ2LINE3 : return aObj2Line3; case MIDDLELINE: return aMiddleLine; } // switch return aMiddleLine; } sal_uInt16 SdrEdgeInfoRec::ImpGetPolyIdx(SdrEdgeLineCode eLineCode, const XPolygon& rXP) const { switch (eLineCode) { case OBJ1LINE2 : return 1; case OBJ1LINE3 : return 2; case OBJ2LINE2 : return rXP.GetPointCount()-3; case OBJ2LINE3 : return rXP.GetPointCount()-4; case MIDDLELINE: return nMiddleLine; } // switch return 0; } FASTBOOL SdrEdgeInfoRec::ImpIsHorzLine(SdrEdgeLineCode eLineCode, const XPolygon& rXP) const { sal_uInt16 nIdx=ImpGetPolyIdx(eLineCode,rXP); FASTBOOL bHorz=nAngle1==0 || nAngle1==18000; if (eLineCode==OBJ2LINE2 || eLineCode==OBJ2LINE3) { nIdx=rXP.GetPointCount()-nIdx; // #36314# bHorz=nAngle2==0 || nAngle2==18000; // #52000# } if ((nIdx & 1)==1) bHorz=!bHorz; return bHorz; } void SdrEdgeInfoRec::ImpSetLineVersatz(SdrEdgeLineCode eLineCode, const XPolygon& rXP, long nVal) { Point& rPt=ImpGetLineVersatzPoint(eLineCode); if (ImpIsHorzLine(eLineCode,rXP)) rPt.Y()=nVal; else rPt.X()=nVal; } long SdrEdgeInfoRec::ImpGetLineVersatz(SdrEdgeLineCode eLineCode, const XPolygon& rXP) const { const Point& rPt=ImpGetLineVersatzPoint(eLineCode); if (ImpIsHorzLine(eLineCode,rXP)) return rPt.Y(); else return rPt.X(); } ////////////////////////////////////////////////////////////////////////////// // BaseProperties section sdr::properties::BaseProperties* SdrEdgeObj::CreateObjectSpecificProperties() { return new sdr::properties::ConnectorProperties(*this); } ////////////////////////////////////////////////////////////////////////////// // DrawContact section sdr::contact::ViewContact* SdrEdgeObj::CreateObjectSpecificViewContact() { return new sdr::contact::ViewContactOfSdrEdgeObj(*this); } ////////////////////////////////////////////////////////////////////////////// TYPEINIT1(SdrEdgeObj,SdrTextObj); SdrEdgeObj::SdrEdgeObj() : SdrTextObj(), nNotifyingCount(0), bEdgeTrackDirty(sal_False), bEdgeTrackUserDefined(sal_False), // #109007# Default is to allow default connects mbSuppressDefaultConnect(sal_False), // #110649# mbBoundRectCalculationRunning(sal_False), mbSuppressed(false) { bClosedObj=sal_False; bIsEdge=sal_True; pEdgeTrack=new XPolygon; } SdrEdgeObj::~SdrEdgeObj() { DisconnectFromNode(sal_True); DisconnectFromNode(sal_False); delete pEdgeTrack; } void SdrEdgeObj::ImpSetAttrToEdgeInfo() { const SfxItemSet& rSet = GetObjectItemSet(); SdrEdgeKind eKind = ((SdrEdgeKindItem&)(rSet.Get(SDRATTR_EDGEKIND))).GetValue(); sal_Int32 nVal1 = ((SdrEdgeLine1DeltaItem&)rSet.Get(SDRATTR_EDGELINE1DELTA)).GetValue(); sal_Int32 nVal2 = ((SdrEdgeLine2DeltaItem&)rSet.Get(SDRATTR_EDGELINE2DELTA)).GetValue(); sal_Int32 nVal3 = ((SdrEdgeLine3DeltaItem&)rSet.Get(SDRATTR_EDGELINE3DELTA)).GetValue(); if(eKind == SDREDGE_ORTHOLINES || eKind == SDREDGE_BEZIER) { sal_Int32 nVals[3] = { nVal1, nVal2, nVal3 }; sal_uInt16 n = 0; if(aEdgeInfo.nObj1Lines >= 2 && n < 3) { aEdgeInfo.ImpSetLineVersatz(OBJ1LINE2, *pEdgeTrack, nVals[n]); n++; } if(aEdgeInfo.nObj1Lines >= 3 && n < 3) { aEdgeInfo.ImpSetLineVersatz(OBJ1LINE3, *pEdgeTrack, nVals[n]); n++; } if(aEdgeInfo.nMiddleLine != 0xFFFF && n < 3) { aEdgeInfo.ImpSetLineVersatz(MIDDLELINE, *pEdgeTrack, nVals[n]); n++; } if(aEdgeInfo.nObj2Lines >= 3 && n < 3) { aEdgeInfo.ImpSetLineVersatz(OBJ2LINE3, *pEdgeTrack, nVals[n]); n++; } if(aEdgeInfo.nObj2Lines >= 2 && n < 3) { aEdgeInfo.ImpSetLineVersatz(OBJ2LINE2, *pEdgeTrack, nVals[n]); n++; } } else if(eKind == SDREDGE_THREELINES) { sal_Bool bHor1 = aEdgeInfo.nAngle1 == 0 || aEdgeInfo.nAngle1 == 18000; sal_Bool bHor2 = aEdgeInfo.nAngle2 == 0 || aEdgeInfo.nAngle2 == 18000; if(bHor1) { aEdgeInfo.aObj1Line2.X() = nVal1; } else { aEdgeInfo.aObj1Line2.Y() = nVal1; } if(bHor2) { aEdgeInfo.aObj2Line2.X() = nVal2; } else { aEdgeInfo.aObj2Line2.Y() = nVal2; } } // #84649# ImpDirtyEdgeTrack(); } void SdrEdgeObj::ImpSetEdgeInfoToAttr() { const SfxItemSet& rSet = GetObjectItemSet(); SdrEdgeKind eKind = ((SdrEdgeKindItem&)(rSet.Get(SDRATTR_EDGEKIND))).GetValue(); sal_Int32 nValAnz = ((SdrEdgeLineDeltaAnzItem&)rSet.Get(SDRATTR_EDGELINEDELTAANZ)).GetValue(); sal_Int32 nVal1 = ((SdrEdgeLine1DeltaItem&)rSet.Get(SDRATTR_EDGELINE1DELTA)).GetValue(); sal_Int32 nVal2 = ((SdrEdgeLine2DeltaItem&)rSet.Get(SDRATTR_EDGELINE2DELTA)).GetValue(); sal_Int32 nVal3 = ((SdrEdgeLine3DeltaItem&)rSet.Get(SDRATTR_EDGELINE3DELTA)).GetValue(); sal_Int32 nVals[3] = { nVal1, nVal2, nVal3 }; sal_uInt16 n = 0; if(eKind == SDREDGE_ORTHOLINES || eKind == SDREDGE_BEZIER) { if(aEdgeInfo.nObj1Lines >= 2 && n < 3) { nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ1LINE2, *pEdgeTrack); n++; } if(aEdgeInfo.nObj1Lines >= 3 && n < 3) { nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ1LINE3, *pEdgeTrack); n++; } if(aEdgeInfo.nMiddleLine != 0xFFFF && n < 3) { nVals[n] = aEdgeInfo.ImpGetLineVersatz(MIDDLELINE, *pEdgeTrack); n++; } if(aEdgeInfo.nObj2Lines >= 3 && n < 3) { nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ2LINE3, *pEdgeTrack); n++; } if(aEdgeInfo.nObj2Lines >= 2 && n < 3) { nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ2LINE2, *pEdgeTrack); n++; } } else if(eKind == SDREDGE_THREELINES) { sal_Bool bHor1 = aEdgeInfo.nAngle1 == 0 || aEdgeInfo.nAngle1 == 18000; sal_Bool bHor2 = aEdgeInfo.nAngle2 == 0 || aEdgeInfo.nAngle2 == 18000; n = 2; nVals[0] = bHor1 ? aEdgeInfo.aObj1Line2.X() : aEdgeInfo.aObj1Line2.Y(); nVals[1] = bHor2 ? aEdgeInfo.aObj2Line2.X() : aEdgeInfo.aObj2Line2.Y(); } if(n != nValAnz || nVals[0] != nVal1 || nVals[1] != nVal2 || nVals[2] != nVal3) { // #75371# Here no more notifying is necessary, just local changes are OK. if(n != nValAnz) { GetProperties().SetObjectItemDirect(SdrEdgeLineDeltaAnzItem(n)); } if(nVals[0] != nVal1) { GetProperties().SetObjectItemDirect(SdrEdgeLine1DeltaItem(nVals[0])); } if(nVals[1] != nVal2) { GetProperties().SetObjectItemDirect(SdrEdgeLine2DeltaItem(nVals[1])); } if(nVals[2] != nVal3) { GetProperties().SetObjectItemDirect(SdrEdgeLine3DeltaItem(nVals[2])); } if(n < 3) { GetProperties().ClearObjectItemDirect(SDRATTR_EDGELINE3DELTA); } if(n < 2) { GetProperties().ClearObjectItemDirect(SDRATTR_EDGELINE2DELTA); } if(n < 1) { GetProperties().ClearObjectItemDirect(SDRATTR_EDGELINE1DELTA); } } } void SdrEdgeObj::TakeObjInfo(SdrObjTransformInfoRec& rInfo) const { // #54102# allow rotation, mirror and shear rInfo.bRotateFreeAllowed = true; rInfo.bRotate90Allowed = true; rInfo.bMirrorFreeAllowed = true; rInfo.bMirror45Allowed = true; rInfo.bMirror90Allowed = true; rInfo.bTransparenceAllowed = sal_False; rInfo.bGradientAllowed = sal_False; rInfo.bShearAllowed = true; rInfo.bEdgeRadiusAllowed = sal_False; FASTBOOL bCanConv=!HasText() || ImpCanConvTextToCurve(); rInfo.bCanConvToPath=bCanConv; rInfo.bCanConvToPoly=bCanConv; rInfo.bCanConvToContour = (rInfo.bCanConvToPoly || LineGeometryUsageIsNecessary()); } sal_uInt16 SdrEdgeObj::GetObjIdentifier() const { return sal_uInt16(OBJ_EDGE); } const Rectangle& SdrEdgeObj::GetCurrentBoundRect() const { if(bEdgeTrackDirty) { ((SdrEdgeObj*)this)->ImpRecalcEdgeTrack(); } return SdrTextObj::GetCurrentBoundRect(); } const Rectangle& SdrEdgeObj::GetSnapRect() const { if(bEdgeTrackDirty) { ((SdrEdgeObj*)this)->ImpRecalcEdgeTrack(); } return SdrTextObj::GetSnapRect(); } void SdrEdgeObj::RecalcSnapRect() { maSnapRect=pEdgeTrack->GetBoundRect(); } void SdrEdgeObj::TakeUnrotatedSnapRect(Rectangle& rRect) const { rRect=GetSnapRect(); } FASTBOOL SdrEdgeObj::IsNode() const { return sal_True; } SdrGluePoint SdrEdgeObj::GetVertexGluePoint(sal_uInt16 nNum) const { Point aPt; sal_uInt16 nPntAnz=pEdgeTrack->GetPointCount(); if (nPntAnz>0) { Point aOfs = GetSnapRect().Center(); if (nNum==2 && GetConnectedNode(sal_True)==NULL) aPt=(*pEdgeTrack)[0]; else if (nNum==3 && GetConnectedNode(sal_False)==NULL) aPt=(*pEdgeTrack)[nPntAnz-1]; else { if ((nPntAnz & 1) ==1) { aPt=(*pEdgeTrack)[nPntAnz/2]; } else { Point aPt1((*pEdgeTrack)[nPntAnz/2-1]); Point aPt2((*pEdgeTrack)[nPntAnz/2]); aPt1+=aPt2; aPt1.X()/=2; aPt1.Y()/=2; aPt=aPt1; } } aPt-=aOfs; } SdrGluePoint aGP(aPt); aGP.SetPercent(sal_False); return aGP; } SdrGluePoint SdrEdgeObj::GetCornerGluePoint(sal_uInt16 nNum) const { return GetVertexGluePoint(nNum); } const SdrGluePointList* SdrEdgeObj::GetGluePointList() const { return NULL; // Keine benutzerdefinierten Klebepunkte fuer Verbinder #31671# } SdrGluePointList* SdrEdgeObj::ForceGluePointList() { return NULL; // Keine benutzerdefinierten Klebepunkte fuer Verbinder #31671# } FASTBOOL SdrEdgeObj::IsEdge() const { return sal_True; } void SdrEdgeObj::ConnectToNode(FASTBOOL bTail1, SdrObject* pObj) { SdrObjConnection& rCon=GetConnection(bTail1); DisconnectFromNode(bTail1); if (pObj!=NULL) { pObj->AddListener(*this); rCon.pObj=pObj; // #120437# If connection is set, reset bEdgeTrackUserDefined bEdgeTrackUserDefined = false; ImpDirtyEdgeTrack(); } } void SdrEdgeObj::DisconnectFromNode(FASTBOOL bTail1) { SdrObjConnection& rCon=GetConnection(bTail1); if (rCon.pObj!=NULL) { rCon.pObj->RemoveListener(*this); rCon.pObj=NULL; } } SdrObject* SdrEdgeObj::GetConnectedNode(FASTBOOL bTail1) const { SdrObject* pObj=GetConnection(bTail1).pObj; if (pObj!=NULL && (pObj->GetPage()!=pPage || !pObj->IsInserted())) pObj=NULL; return pObj; } FASTBOOL SdrEdgeObj::CheckNodeConnection(FASTBOOL bTail1) const { FASTBOOL bRet=sal_False; const SdrObjConnection& rCon=GetConnection(bTail1); sal_uInt16 nPtAnz=pEdgeTrack->GetPointCount(); if (rCon.pObj!=NULL && rCon.pObj->GetPage()==pPage && nPtAnz!=0) { const SdrGluePointList* pGPL=rCon.pObj->GetGluePointList(); sal_uInt16 nConAnz=pGPL==NULL ? 0 : pGPL->GetCount(); sal_uInt16 nGesAnz=nConAnz+8; Point aTail(bTail1 ? (*pEdgeTrack)[0] : (*pEdgeTrack)[sal_uInt16(nPtAnz-1)]); for (sal_uInt16 i=0; i<nGesAnz && !bRet; i++) { if (i<nConAnz) { // UserDefined bRet=aTail==(*pGPL)[i].GetAbsolutePos(*rCon.pObj); } else if (i<nConAnz+4) { // Vertex SdrGluePoint aPt(rCon.pObj->GetVertexGluePoint(i-nConAnz)); bRet=aTail==aPt.GetAbsolutePos(*rCon.pObj); } else { // Corner SdrGluePoint aPt(rCon.pObj->GetCornerGluePoint(i-nConAnz-4)); bRet=aTail==aPt.GetAbsolutePos(*rCon.pObj); } } } return bRet; } void SdrEdgeObj::ImpSetTailPoint(FASTBOOL bTail1, const Point& rPt) { sal_uInt16 nPtAnz=pEdgeTrack->GetPointCount(); if (nPtAnz==0) { (*pEdgeTrack)[0]=rPt; (*pEdgeTrack)[1]=rPt; } else if (nPtAnz==1) { if (!bTail1) (*pEdgeTrack)[1]=rPt; else { (*pEdgeTrack)[1]=(*pEdgeTrack)[0]; (*pEdgeTrack)[0]=rPt; } } else { if (!bTail1) (*pEdgeTrack)[sal_uInt16(nPtAnz-1)]=rPt; else (*pEdgeTrack)[0]=rPt; } ImpRecalcEdgeTrack(); SetRectsDirty(); } void SdrEdgeObj::ImpDirtyEdgeTrack() { if ( !bEdgeTrackUserDefined || !(GetModel() && GetModel()->isLocked()) ) bEdgeTrackDirty = sal_True; } void SdrEdgeObj::ImpUndirtyEdgeTrack() { if (bEdgeTrackDirty && (GetModel() && GetModel()->isLocked()) ) { ImpRecalcEdgeTrack(); } } void SdrEdgeObj::ImpRecalcEdgeTrack() { // #120437# if bEdgeTrackUserDefined, do not recalculate if(bEdgeTrackUserDefined) { return; } // #120437# also not when model locked during import, but remember if(!GetModel() || GetModel()->isLocked()) { mbSuppressed = true; return; } // #110649# if(IsBoundRectCalculationRunning()) { // this object is involved into another ImpRecalcEdgeTrack() call // from another SdrEdgeObj. Do not calculate again to avoid loop. // Also, do not change bEdgeTrackDirty so that it gets recalculated // later at the first non-looping call. } else { if(mbSuppressed) { // #123048# If layouting was ever suppressed, it needs to be done once // and the attr need to be set at EdgeInfo, else these attr *will be lost* // in the following call to ImpSetEdgeInfoToAttr() sice they were never // set before (!) *pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo); ImpSetAttrToEdgeInfo(); mbSuppressed = false; } // To not run in a depth loop, use a coloring algorythm on // SdrEdgeObj BoundRect calculations mbBoundRectCalculationRunning = sal_True; Rectangle aBoundRect0; if (pUserCall!=NULL) aBoundRect0=GetCurrentBoundRect(); SetRectsDirty(); // #110094#-14 if (!bEdgeTrackDirty) SendRepaintBroadcast(); *pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo); ImpSetEdgeInfoToAttr(); // Die Werte aus aEdgeInfo in den Pool kopieren bEdgeTrackDirty=sal_False; // Only redraw here, no object change ActionChanged(); // BroadcastObjectChange(); SendUserCall(SDRUSERCALL_RESIZE,aBoundRect0); // #110649# mbBoundRectCalculationRunning = sal_False; } } sal_uInt16 SdrEdgeObj::ImpCalcEscAngle(SdrObject* pObj, const Point& rPt) const { if (pObj==NULL) return SDRESC_ALL; Rectangle aR(pObj->GetSnapRect()); long dxl=rPt.X()-aR.Left(); long dyo=rPt.Y()-aR.Top(); long dxr=aR.Right()-rPt.X(); long dyu=aR.Bottom()-rPt.Y(); FASTBOOL bxMitt=Abs(dxl-dxr)<2; FASTBOOL byMitt=Abs(dyo-dyu)<2; long dx=Min(dxl,dxr); long dy=Min(dyo,dyu); FASTBOOL bDiag=Abs(dx-dy)<2; if (bxMitt && byMitt) return SDRESC_ALL; // In der Mitte if (bDiag) { // diagonal sal_uInt16 nRet=0; if (byMitt) nRet|=SDRESC_VERT; if (bxMitt) nRet|=SDRESC_HORZ; if (dxl<dxr) { // Links if (dyo<dyu) nRet|=SDRESC_LEFT | SDRESC_TOP; else nRet|=SDRESC_LEFT | SDRESC_BOTTOM; } else { // Rechts if (dyo<dyu) nRet|=SDRESC_RIGHT | SDRESC_TOP; else nRet|=SDRESC_RIGHT | SDRESC_BOTTOM; } return nRet; } if (dx<dy) { // waagerecht if (bxMitt) return SDRESC_HORZ; if (dxl<dxr) return SDRESC_LEFT; else return SDRESC_RIGHT; } else { // senkrecht if (byMitt) return SDRESC_VERT; if (dyo<dyu) return SDRESC_TOP; else return SDRESC_BOTTOM; } } FASTBOOL SdrEdgeObj::ImpStripPolyPoints(XPolygon& /*rXP*/) const { // fehlende Implementation !!! return sal_False; } XPolygon SdrEdgeObj::ImpCalcObjToCenter(const Point& rStPt, long nEscAngle, const Rectangle& rRect, const Point& rMeeting) const { XPolygon aXP; aXP.Insert(XPOLY_APPEND,rStPt,XPOLY_NORMAL); FASTBOOL bRts=nEscAngle==0; FASTBOOL bObn=nEscAngle==9000; FASTBOOL bLks=nEscAngle==18000; FASTBOOL bUnt=nEscAngle==27000; Point aP1(rStPt); // erstmal den Pflichtabstand if (bLks) aP1.X()=rRect.Left(); if (bRts) aP1.X()=rRect.Right(); if (bObn) aP1.Y()=rRect.Top(); if (bUnt) aP1.Y()=rRect.Bottom(); FASTBOOL bFinish=sal_False; if (!bFinish) { Point aP2(aP1); // Und nun den Pflichtabstand ggf. bis auf Meetinghoehe erweitern if (bLks && rMeeting.X()<=aP2.X()) aP2.X()=rMeeting.X(); if (bRts && rMeeting.X()>=aP2.X()) aP2.X()=rMeeting.X(); if (bObn && rMeeting.Y()<=aP2.Y()) aP2.Y()=rMeeting.Y(); if (bUnt && rMeeting.Y()>=aP2.Y()) aP2.Y()=rMeeting.Y(); aXP.Insert(XPOLY_APPEND,aP2,XPOLY_NORMAL); Point aP3(aP2); if ((bLks && rMeeting.X()>aP2.X()) || (bRts && rMeeting.X()<aP2.X())) { // Aussenrum if (rMeeting.Y()<aP2.Y()) { aP3.Y()=rRect.Top(); if (rMeeting.Y()<aP3.Y()) aP3.Y()=rMeeting.Y(); } else { aP3.Y()=rRect.Bottom(); if (rMeeting.Y()>aP3.Y()) aP3.Y()=rMeeting.Y(); } aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL); if (aP3.Y()!=rMeeting.Y()) { aP3.X()=rMeeting.X(); aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL); } } if ((bObn && rMeeting.Y()>aP2.Y()) || (bUnt && rMeeting.Y()<aP2.Y())) { // Aussenrum if (rMeeting.X()<aP2.X()) { aP3.X()=rRect.Left(); if (rMeeting.X()<aP3.X()) aP3.X()=rMeeting.X(); } else { aP3.X()=rRect.Right(); if (rMeeting.X()>aP3.X()) aP3.X()=rMeeting.X(); } aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL); if (aP3.X()!=rMeeting.X()) { aP3.Y()=rMeeting.Y(); aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL); } } } #ifdef DBG_UTIL if (aXP.GetPointCount()>4) { DBG_ERROR("SdrEdgeObj::ImpCalcObjToCenter(): Polygon hat mehr als 4 Punkte!"); } #endif return aXP; } XPolygon SdrEdgeObj::ImpCalcEdgeTrack(const XPolygon& rTrack0, SdrObjConnection& rCon1, SdrObjConnection& rCon2, SdrEdgeInfoRec* pInfo) const { Point aPt1,aPt2; SdrGluePoint aGP1,aGP2; sal_uInt16 nEsc1=SDRESC_ALL,nEsc2=SDRESC_ALL; Rectangle aBoundRect1; Rectangle aBoundRect2; Rectangle aBewareRect1; Rectangle aBewareRect2; // Erstmal die alten Endpunkte wiederholen if (rTrack0.GetPointCount()!=0) { aPt1=rTrack0[0]; sal_uInt16 nSiz=rTrack0.GetPointCount(); nSiz--; aPt2=rTrack0[nSiz]; } else { if (!aOutRect.IsEmpty()) { aPt1=aOutRect.TopLeft(); aPt2=aOutRect.BottomRight(); } } // #54102# To allow interactive preview, do also if not inserted FASTBOOL bCon1=rCon1.pObj!=NULL && rCon1.pObj->GetPage()==pPage; // && rCon1.pObj->IsInserted(); FASTBOOL bCon2=rCon2.pObj!=NULL && rCon2.pObj->GetPage()==pPage; // && rCon2.pObj->IsInserted(); const SfxItemSet& rSet = GetObjectItemSet(); if (bCon1) { if (rCon1.pObj==(SdrObject*)this) { // sicherheitshalber Abfragen #44515# aBoundRect1=aOutRect; } else { aBoundRect1 = rCon1.pObj->GetCurrentBoundRect(); } aBoundRect1.Move(rCon1.aObjOfs.X(),rCon1.aObjOfs.Y()); aBewareRect1=aBoundRect1; sal_Int32 nH = ((SdrEdgeNode1HorzDistItem&)rSet.Get(SDRATTR_EDGENODE1HORZDIST)).GetValue(); sal_Int32 nV = ((SdrEdgeNode1VertDistItem&)rSet.Get(SDRATTR_EDGENODE1VERTDIST)).GetValue(); aBewareRect1.Left()-=nH; aBewareRect1.Right()+=nH; aBewareRect1.Top()-=nV; aBewareRect1.Bottom()+=nV; } else { aBoundRect1=Rectangle(aPt1,aPt1); aBoundRect1.Move(rCon1.aObjOfs.X(),rCon1.aObjOfs.Y()); aBewareRect1=aBoundRect1; } if (bCon2) { if (rCon2.pObj==(SdrObject*)this) { // sicherheitshalber Abfragen #44515# aBoundRect2=aOutRect; } else { aBoundRect2 = rCon2.pObj->GetCurrentBoundRect(); } aBoundRect2.Move(rCon2.aObjOfs.X(),rCon2.aObjOfs.Y()); aBewareRect2=aBoundRect2; sal_Int32 nH = ((SdrEdgeNode2HorzDistItem&)rSet.Get(SDRATTR_EDGENODE2HORZDIST)).GetValue(); sal_Int32 nV = ((SdrEdgeNode2VertDistItem&)rSet.Get(SDRATTR_EDGENODE2VERTDIST)).GetValue(); aBewareRect2.Left()-=nH; aBewareRect2.Right()+=nH; aBewareRect2.Top()-=nV; aBewareRect2.Bottom()+=nV; } else { aBoundRect2=Rectangle(aPt2,aPt2); aBoundRect2.Move(rCon2.aObjOfs.X(),rCon2.aObjOfs.Y()); aBewareRect2=aBoundRect2; } XPolygon aBestXP; sal_uIntPtr nBestQual=0xFFFFFFFF; SdrEdgeInfoRec aBestInfo; FASTBOOL bAuto1=bCon1 && rCon1.bBestVertex; FASTBOOL bAuto2=bCon2 && rCon2.bBestVertex; if (bAuto1) rCon1.bAutoVertex=sal_True; if (bAuto2) rCon2.bAutoVertex=sal_True; sal_uInt16 nBestAuto1=0; sal_uInt16 nBestAuto2=0; sal_uInt16 nAnz1=bAuto1 ? 4 : 1; sal_uInt16 nAnz2=bAuto2 ? 4 : 1; for (sal_uInt16 nNum1=0; nNum1<nAnz1; nNum1++) { if (bAuto1) rCon1.nConId=nNum1; if (bCon1 && rCon1.TakeGluePoint(aGP1,sal_True)) { aPt1=aGP1.GetPos(); nEsc1=aGP1.GetEscDir(); if (nEsc1==SDRESC_SMART) nEsc1=ImpCalcEscAngle(rCon1.pObj,aPt1-rCon1.aObjOfs); } for (sal_uInt16 nNum2=0; nNum2<nAnz2; nNum2++) { if (bAuto2) rCon2.nConId=nNum2; if (bCon2 && rCon2.TakeGluePoint(aGP2,sal_True)) { aPt2=aGP2.GetPos(); nEsc2=aGP2.GetEscDir(); if (nEsc2==SDRESC_SMART) nEsc2=ImpCalcEscAngle(rCon2.pObj,aPt2-rCon2.aObjOfs); } for (long nA1=0; nA1<36000; nA1+=9000) { sal_uInt16 nE1=nA1==0 ? SDRESC_RIGHT : nA1==9000 ? SDRESC_TOP : nA1==18000 ? SDRESC_LEFT : nA1==27000 ? SDRESC_BOTTOM : 0; for (long nA2=0; nA2<36000; nA2+=9000) { sal_uInt16 nE2=nA2==0 ? SDRESC_RIGHT : nA2==9000 ? SDRESC_TOP : nA2==18000 ? SDRESC_LEFT : nA2==27000 ? SDRESC_BOTTOM : 0; if ((nEsc1&nE1)!=0 && (nEsc2&nE2)!=0) { sal_uIntPtr nQual=0; SdrEdgeInfoRec aInfo; if (pInfo!=NULL) aInfo=*pInfo; XPolygon aXP(ImpCalcEdgeTrack(aPt1,nA1,aBoundRect1,aBewareRect1,aPt2,nA2,aBoundRect2,aBewareRect2,&nQual,&aInfo)); if (nQual<nBestQual) { aBestXP=aXP; nBestQual=nQual; aBestInfo=aInfo; nBestAuto1=nNum1; nBestAuto2=nNum2; } } } } } } if (bAuto1) rCon1.nConId=nBestAuto1; if (bAuto2) rCon2.nConId=nBestAuto2; if (pInfo!=NULL) *pInfo=aBestInfo; return aBestXP; } XPolygon SdrEdgeObj::ImpCalcEdgeTrack(const Point& rPt1, long nAngle1, const Rectangle& rBoundRect1, const Rectangle& rBewareRect1, const Point& rPt2, long nAngle2, const Rectangle& rBoundRect2, const Rectangle& rBewareRect2, sal_uIntPtr* pnQuality, SdrEdgeInfoRec* pInfo) const { SdrEdgeKind eKind=((SdrEdgeKindItem&)(GetObjectItem(SDRATTR_EDGEKIND))).GetValue(); FASTBOOL bRts1=nAngle1==0; FASTBOOL bObn1=nAngle1==9000; FASTBOOL bLks1=nAngle1==18000; FASTBOOL bUnt1=nAngle1==27000; FASTBOOL bHor1=bLks1 || bRts1; FASTBOOL bVer1=bObn1 || bUnt1; FASTBOOL bRts2=nAngle2==0; FASTBOOL bObn2=nAngle2==9000; FASTBOOL bLks2=nAngle2==18000; FASTBOOL bUnt2=nAngle2==27000; FASTBOOL bHor2=bLks2 || bRts2; FASTBOOL bVer2=bObn2 || bUnt2; FASTBOOL bInfo=pInfo!=NULL; if (bInfo) { pInfo->cOrthoForm=0; pInfo->nAngle1=nAngle1; pInfo->nAngle2=nAngle2; pInfo->nObj1Lines=1; pInfo->nObj2Lines=1; pInfo->nMiddleLine=0xFFFF; } Point aPt1(rPt1); Point aPt2(rPt2); Rectangle aBoundRect1 (rBoundRect1 ); Rectangle aBoundRect2 (rBoundRect2 ); Rectangle aBewareRect1(rBewareRect1); Rectangle aBewareRect2(rBewareRect2); Point aMeeting((aPt1.X()+aPt2.X()+1)/2,(aPt1.Y()+aPt2.Y()+1)/2); FASTBOOL bMeetingXMid=sal_True; FASTBOOL bMeetingYMid=sal_True; if (eKind==SDREDGE_ONELINE) { XPolygon aXP(2); aXP[0]=rPt1; aXP[1]=rPt2; if (pnQuality!=NULL) { *pnQuality=Abs(rPt1.X()-rPt2.X())+Abs(rPt1.Y()-rPt2.Y()); } return aXP; } else if (eKind==SDREDGE_THREELINES) { XPolygon aXP(4); aXP[0]=rPt1; aXP[1]=rPt1; aXP[2]=rPt2; aXP[3]=rPt2; if (bRts1) aXP[1].X()=aBewareRect1.Right(); //+=500; if (bObn1) aXP[1].Y()=aBewareRect1.Top(); //-=500; if (bLks1) aXP[1].X()=aBewareRect1.Left(); //-=500; if (bUnt1) aXP[1].Y()=aBewareRect1.Bottom(); //+=500; if (bRts2) aXP[2].X()=aBewareRect2.Right(); //+=500; if (bObn2) aXP[2].Y()=aBewareRect2.Top(); //-=500; if (bLks2) aXP[2].X()=aBewareRect2.Left(); //-=500; if (bUnt2) aXP[2].Y()=aBewareRect2.Bottom(); //+=500; if (pnQuality!=NULL) { long nQ=Abs(aXP[1].X()-aXP[0].X())+Abs(aXP[1].Y()-aXP[0].Y()); nQ+=Abs(aXP[2].X()-aXP[1].X())+Abs(aXP[2].Y()-aXP[1].Y()); nQ+=Abs(aXP[3].X()-aXP[2].X())+Abs(aXP[3].Y()-aXP[2].Y()); *pnQuality=nQ; } if (bInfo) { pInfo->nObj1Lines=2; pInfo->nObj2Lines=2; if (bHor1) { aXP[1].X()+=pInfo->aObj1Line2.X(); } else { aXP[1].Y()+=pInfo->aObj1Line2.Y(); } if (bHor2) { aXP[2].X()+=pInfo->aObj2Line2.X(); } else { aXP[2].Y()+=pInfo->aObj2Line2.Y(); } } return aXP; } sal_uInt16 nIntersections=0; FASTBOOL bForceMeeting=sal_False; // Muss die Linie durch den MeetingPoint laufen? { Point aC1(aBewareRect1.Center()); Point aC2(aBewareRect2.Center()); if (aBewareRect1.Left()<=aBewareRect2.Right() && aBewareRect1.Right()>=aBewareRect2.Left()) { // Ueberschneidung auf der X-Achse long n1=Max(aBewareRect1.Left(),aBewareRect2.Left()); long n2=Min(aBewareRect1.Right(),aBewareRect2.Right()); aMeeting.X()=(n1+n2+1)/2; } else { // Ansonsten den Mittelpunkt des Freiraums if (aC1.X()<aC2.X()) { aMeeting.X()=(aBewareRect1.Right()+aBewareRect2.Left()+1)/2; } else { aMeeting.X()=(aBewareRect1.Left()+aBewareRect2.Right()+1)/2; } } if (aBewareRect1.Top()<=aBewareRect2.Bottom() && aBewareRect1.Bottom()>=aBewareRect2.Top()) { // Ueberschneidung auf der Y-Achse long n1=Max(aBewareRect1.Top(),aBewareRect2.Top()); long n2=Min(aBewareRect1.Bottom(),aBewareRect2.Bottom()); aMeeting.Y()=(n1+n2+1)/2; } else { // Ansonsten den Mittelpunkt des Freiraums if (aC1.Y()<aC2.Y()) { aMeeting.Y()=(aBewareRect1.Bottom()+aBewareRect2.Top()+1)/2; } else { aMeeting.Y()=(aBewareRect1.Top()+aBewareRect2.Bottom()+1)/2; } } // Im Prinzip gibt es 3 zu unterscheidene Faelle: // 1. Beide in die selbe Richtung // 2. Beide in genau entgegengesetzte Richtungen // 3. Einer waagerecht und der andere senkrecht long nXMin=Min(aBewareRect1.Left(),aBewareRect2.Left()); long nXMax=Max(aBewareRect1.Right(),aBewareRect2.Right()); long nYMin=Min(aBewareRect1.Top(),aBewareRect2.Top()); long nYMax=Max(aBewareRect1.Bottom(),aBewareRect2.Bottom()); FASTBOOL bBewareOverlap=aBewareRect1.Right()>aBewareRect2.Left() && aBewareRect1.Left()<aBewareRect2.Right() && aBewareRect1.Bottom()>aBewareRect2.Top() && aBewareRect1.Top()<aBewareRect2.Bottom(); unsigned nMainCase=3; if (nAngle1==nAngle2) nMainCase=1; else if ((bHor1 && bHor2) || (bVer1 && bVer2)) nMainCase=2; if (nMainCase==1) { // Fall 1: Beide in eine Richtung moeglich. if (bVer1) aMeeting.X()=(aPt1.X()+aPt2.X()+1)/2; // ist hier besser, als der if (bHor1) aMeeting.Y()=(aPt1.Y()+aPt2.Y()+1)/2; // Mittelpunkt des Freiraums // bX1Ok bedeutet, dass die Vertikale, die aus Obj1 austritt, keinen Konflikt mit Obj2 bildet, ... FASTBOOL bX1Ok=aPt1.X()<=aBewareRect2.Left() || aPt1.X()>=aBewareRect2.Right(); FASTBOOL bX2Ok=aPt2.X()<=aBewareRect1.Left() || aPt2.X()>=aBewareRect1.Right(); FASTBOOL bY1Ok=aPt1.Y()<=aBewareRect2.Top() || aPt1.Y()>=aBewareRect2.Bottom(); FASTBOOL bY2Ok=aPt2.Y()<=aBewareRect1.Top() || aPt2.Y()>=aBewareRect1.Bottom(); if (bLks1 && (bY1Ok || aBewareRect1.Left()<aBewareRect2.Right()) && (bY2Ok || aBewareRect2.Left()<aBewareRect1.Right())) { aMeeting.X()=nXMin; bMeetingXMid=sal_False; } if (bRts1 && (bY1Ok || aBewareRect1.Right()>aBewareRect2.Left()) && (bY2Ok || aBewareRect2.Right()>aBewareRect1.Left())) { aMeeting.X()=nXMax; bMeetingXMid=sal_False; } if (bObn1 && (bX1Ok || aBewareRect1.Top()<aBewareRect2.Bottom()) && (bX2Ok || aBewareRect2.Top()<aBewareRect1.Bottom())) { aMeeting.Y()=nYMin; bMeetingYMid=sal_False; } if (bUnt1 && (bX1Ok || aBewareRect1.Bottom()>aBewareRect2.Top()) && (bX2Ok || aBewareRect2.Bottom()>aBewareRect1.Top())) { aMeeting.Y()=nYMax; bMeetingYMid=sal_False; } } else if (nMainCase==2) { // Fall 2: bForceMeeting=sal_True; if (bHor1) { // beide waagerecht /* 9 Moeglichkeiten: ů ů ů */ /* 2.1 Gegenueber, Ueberschneidung Ă ´ ů */ /* nur auf der Y-Achse ů ů ů */ /* 2.2, 2.3 Gegenueber, vertikal versetzt. Ă ů ů ů ů ů */ /* Ueberschneidung weder auf der ů ´ ů ů ´ ů */ /* X- noch auf der Y-Achse ů ů ů Ă ů ů */ /* 2.4, 2.5 Untereinander, ů Ă ů ů ů ů */ /* Ueberschneidung ů ´ ů ů ´ ů */ /* nur auf X-Achse ů ů ů ů Ă ů */ /* 2.6, 2.7 Gegeneinander, vertikal versetzt. ů ů Ă ů ů ů */ /* Ueberschneidung weder auf der ů ´ ů ů ´ ů */ /* X- noch auf der Y-Achse. ů ů ů ů ů Ă */ /* 2.8 Gegeneinander. ů ů ů */ /* Ueberschneidung nur ů ´ Ă */ /* auf der Y-Achse. ů ů ů */ /* 2.9 Die BewareRects der Objekte ueberschneiden */ /* sich auf X- und Y-Achse. */ /* Die Faelle gelten entsprechend umgesetzt auch fuer */ /* senkrechte Linienaustritte. */ /* Die Faelle 2.1-2.7 werden mit dem Default-Meeting ausreichend*/ /* gut behandelt. Spezielle MeetingPoints werden hier also nur */ /* fuer 2.8 und 2.9 bestimmt. */ // Normalisierung. aR1 soll der nach rechts und // aR2 der nach links austretende sein. Rectangle aBewR1(bRts1 ? aBewareRect1 : aBewareRect2); Rectangle aBewR2(bRts1 ? aBewareRect2 : aBewareRect1); Rectangle aBndR1(bRts1 ? aBoundRect1 : aBoundRect2); Rectangle aBndR2(bRts1 ? aBoundRect2 : aBoundRect1); if (aBewR1.Bottom()>aBewR2.Top() && aBewR1.Top()<aBewR2.Bottom()) { // Ueberschneidung auf der Y-Achse. Faelle 2.1, 2.8, 2.9 if (aBewR1.Right()>aBewR2.Left()) { // Faelle 2.8, 2.9 // Fall 2.8 ist immer Aussenrumlauf (bDirect=sal_False). // Fall 2.9 kann auch Direktverbindung sein (bei geringer // Ueberschneidung der BewareRects ohne Ueberschneidung der // Boundrects wenn die Linienaustritte sonst das BewareRect // des jeweils anderen Objekts verletzen wuerden. FASTBOOL bCase29Direct=sal_False; FASTBOOL bCase29=aBewR1.Right()>aBewR2.Left(); if (aBndR1.Right()<=aBndR2.Left()) { // Fall 2.9 und keine Boundrectueberschneidung if ((aPt1.Y()>aBewareRect2.Top() && aPt1.Y()<aBewareRect2.Bottom()) || (aPt2.Y()>aBewareRect1.Top() && aPt2.Y()<aBewareRect1.Bottom())) { bCase29Direct=sal_True; } } if (!bCase29Direct) { FASTBOOL bObenLang=Abs(nYMin-aMeeting.Y())<=Abs(nYMax-aMeeting.Y()); if (bObenLang) { aMeeting.Y()=nYMin; } else { aMeeting.Y()=nYMax; } bMeetingYMid=sal_False; if (bCase29) { // und nun noch dafuer sorgen, dass das // umzingelte Obj nicht durchquert wird if ((aBewR1.Center().Y()<aBewR2.Center().Y()) != bObenLang) { aMeeting.X()=aBewR2.Right(); } else { aMeeting.X()=aBewR1.Left(); } bMeetingXMid=sal_False; } } else { // Direkte Verbindung (3-Linien Z-Verbindung), da // Verletzung der BewareRects unvermeidlich ist. // Via Dreisatz werden die BewareRects nun verkleinert. long nWant1=aBewR1.Right()-aBndR1.Right(); // Abstand bei Obj1 long nWant2=aBndR2.Left()-aBewR2.Left(); // Abstand bei Obj2 long nSpace=aBndR2.Left()-aBndR1.Right(); // verfuegbarer Platz long nGet1=BigMulDiv(nWant1,nSpace,nWant1+nWant2); long nGet2=nSpace-nGet1; if (bRts1) { // Normalisierung zurueckwandeln aBewareRect1.Right()+=nGet1-nWant1; aBewareRect2.Left()-=nGet2-nWant2; } else { aBewareRect2.Right()+=nGet1-nWant1; aBewareRect1.Left()-=nGet2-nWant2; } nIntersections++; // Qualitaet herabsetzen } } } } else if (bVer1) { // beide senkrecht Rectangle aBewR1(bUnt1 ? aBewareRect1 : aBewareRect2); Rectangle aBewR2(bUnt1 ? aBewareRect2 : aBewareRect1); Rectangle aBndR1(bUnt1 ? aBoundRect1 : aBoundRect2); Rectangle aBndR2(bUnt1 ? aBoundRect2 : aBoundRect1); if (aBewR1.Right()>aBewR2.Left() && aBewR1.Left()<aBewR2.Right()) { // Ueberschneidung auf der Y-Achse. Faelle 2.1, 2.8, 2.9 if (aBewR1.Bottom()>aBewR2.Top()) { // Faelle 2.8, 2.9 // Fall 2.8 ist immer Aussenrumlauf (bDirect=sal_False). // Fall 2.9 kann auch Direktverbindung sein (bei geringer // Ueberschneidung der BewareRects ohne Ueberschneidung der // Boundrects wenn die Linienaustritte sonst das BewareRect // des jeweils anderen Objekts verletzen wuerden. FASTBOOL bCase29Direct=sal_False; FASTBOOL bCase29=aBewR1.Bottom()>aBewR2.Top(); if (aBndR1.Bottom()<=aBndR2.Top()) { // Fall 2.9 und keine Boundrectueberschneidung if ((aPt1.X()>aBewareRect2.Left() && aPt1.X()<aBewareRect2.Right()) || (aPt2.X()>aBewareRect1.Left() && aPt2.X()<aBewareRect1.Right())) { bCase29Direct=sal_True; } } if (!bCase29Direct) { FASTBOOL bLinksLang=Abs(nXMin-aMeeting.X())<=Abs(nXMax-aMeeting.X()); if (bLinksLang) { aMeeting.X()=nXMin; } else { aMeeting.X()=nXMax; } bMeetingXMid=sal_False; if (bCase29) { // und nun noch dafuer sorgen, dass das // umzingelte Obj nicht durchquert wird if ((aBewR1.Center().X()<aBewR2.Center().X()) != bLinksLang) { aMeeting.Y()=aBewR2.Bottom(); } else { aMeeting.Y()=aBewR1.Top(); } bMeetingYMid=sal_False; } } else { // Direkte Verbindung (3-Linien Z-Verbindung), da // Verletzung der BewareRects unvermeidlich ist. // Via Dreisatz werden die BewareRects nun verkleinert. long nWant1=aBewR1.Bottom()-aBndR1.Bottom(); // Abstand bei Obj1 long nWant2=aBndR2.Top()-aBewR2.Top(); // Abstand bei Obj2 long nSpace=aBndR2.Top()-aBndR1.Bottom(); // verfuegbarer Platz long nGet1=BigMulDiv(nWant1,nSpace,nWant1+nWant2); long nGet2=nSpace-nGet1; if (bUnt1) { // Normalisierung zurueckwandeln aBewareRect1.Bottom()+=nGet1-nWant1; aBewareRect2.Top()-=nGet2-nWant2; } else { aBewareRect2.Bottom()+=nGet1-nWant1; aBewareRect1.Top()-=nGet2-nWant2; } nIntersections++; // Qualitaet herabsetzen } } } } } else if (nMainCase==3) { // Fall 3: Einer waagerecht und der andere senkrecht. Sehr viele Fallunterscheidungen /* Kleine Legende: ů ú ů ú ů -> Ohne Ueberschneidung, maximal Beruehrung. */ /* ú ú ú ú ú -> Ueberschneidung */ /* ů ú Ă ú ů -> Selbe Hoehe */ /* ú ú ú ú ú -> Ueberschneidung */ /* ů ú ů ú ů -> Ohne Ueberschneidung, maximal Beruehrung. */ /* Linienaustritte links ´, rechts Ă, oben Á und unten Â. */ /* Insgesamt sind 96 Konstellationen moeglich, wobei einige nicht einmal */ /* eindeutig einem Fall und damit einer Behandlungsmethode zugeordnet werden */ /* koennen. */ /* 3.1: Hierzu moegen alle Konstellationen zaehlen, die durch den */ /* Default-MeetingPoint zufriedenstellend abgedeckt sind (20+12). */ /* Â Â Â ú Á Á ú Â Â Â Diese 12 ů ú ů Â ů ů ú ů ú ů ů Â ů ú ů ů ú ů ú ů */ /* ú ú ú ú Á Á ú ú ú ú Konstel. ú ú ú ú ú ú ú ú ú Â ú ú ú ú ú Â ú ú ú ú */ /* ů ú Ă ú ů ů ú ´ ú ů jedoch ů ú Ă ú Á ů ú Ă ú Â Á ú ´ ú ů Â ú ´ ú ů */ /* ú ú ú ú Â Â ú ú ú ú nur zum ú ú ú ú Á ú ú ú ú ú Á ú ú ú ú ú ú ú ú ú */ /* Á Á Á ú Â Â ú Á Á Á Teil: ů ú ů Á ů ů ú ů ú ů ů Á ů ú ů ů ú ů ú ů */ /* Letztere 16 Faelle scheiden aus, sobald sich die Objekte offen */ /* gegenueberstehen (siehe Fall 3.2). */ /* 3.2: Die Objekte stehen sich offen gegenueber und somit ist eine */ /* Verbindung mit lediglich 2 Linien moeglich (4+20). */ /* Dieser Fall hat 1. Prioritaet. */ /* ů ú ů ú Â Â ú ů ú ů Diese 20 ů ú ů Â ů ů Â ů ú ů ů ú ů ú ů ů ú ů ú ů */ /* ú ú ú ú ú ú ú ú ú ú Konstel. ú ú ú Â Â Â Â ú ú ú ú ú ú ú ú ú ú ú ú ú */ /* ů ú Ă ú ů ů ú ´ ú ů jedoch ů ú Ă Á Á Á Á ´ ú ů ů ú Ă Â Â Â Â ´ ú ů */ /* ú ú ú ú ú ú ú ú ú ú nur zum ú ú ú Á Á Á Á ú ú ú ú ú ú ú ú ú ú ú ú ú */ /* ů ú ů ú Á Á ú ů ú ů Teil: ů ú ů Á ů ů Á ů ú ů ů ú ů ú ů ů ú ů ú ů */ /* 3.3: Die Linienaustritte zeigen vom anderen Objekt weg bzw. hinter */ /* dessen Ruecken vorbei (52+4). */ /* Á Á Á Á ů ů Á Á Á Á ů ú ú ú ů ů ú ů ú ů Diese 4 ů ú ů ú ů ů ú ů ú ů */ /* Á Á Á Á ú ú Á Á Á Á Â Â Â ú ú ú ú Â Â Â Konstel. ú ú ú Â ú ú Â ú ú ú */ /* Á Á Ă ú ů ů ú ´ Á Á Â Â Ă ú ů ů ú ´ Â Â jedoch ů ú Ă ú ů ů ú ´ ú ů */ /* Á Á Á ú ú ú ú Á Á Á Â Â Â Â ú ú Â Â Â Â nur zum ú ú ú Á ú ú Á ú ú ú */ /* ů ú ů ú ů ů ú ů ú ů Â Â Â Â ů ů Â Â Â Â Teil: ů ú ů ú ů ů ú ů ú ů */ // Fall 3.2 Rectangle aTmpR1(aBewareRect1); Rectangle aTmpR2(aBewareRect2); if (bBewareOverlap) { // Ueberschneidung der BewareRects: BoundRects fuer Check auf Fall 3.2 verwenden. aTmpR1=aBoundRect1; aTmpR2=aBoundRect2; } if ((((bRts1 && aTmpR1.Right ()<=aPt2.X()) || (bLks1 && aTmpR1.Left()>=aPt2.X())) && ((bUnt2 && aTmpR2.Bottom()<=aPt1.Y()) || (bObn2 && aTmpR2.Top ()>=aPt1.Y()))) || (((bRts2 && aTmpR2.Right ()<=aPt1.X()) || (bLks2 && aTmpR2.Left()>=aPt1.X())) && ((bUnt1 && aTmpR1.Bottom()<=aPt2.Y()) || (bObn1 && aTmpR1.Top ()>=aPt2.Y())))) { // Fall 3.2 trifft zu: Verbindung mit lediglich 2 Linien bForceMeeting=sal_True; bMeetingXMid=sal_False; bMeetingYMid=sal_False; if (bHor1) { aMeeting.X()=aPt2.X(); aMeeting.Y()=aPt1.Y(); } else { aMeeting.X()=aPt1.X(); aMeeting.Y()=aPt2.Y(); } // Falls Ueberschneidung der BewareRects: aBewareRect1=aTmpR1; aBewareRect2=aTmpR2; } else if ((((bRts1 && aBewareRect1.Right ()>aBewareRect2.Left ()) || (bLks1 && aBewareRect1.Left ()<aBewareRect2.Right ())) && ((bUnt2 && aBewareRect2.Bottom()>aBewareRect1.Top ()) || (bObn2 && aBewareRect2.Top ()<aBewareRect1.Bottom()))) || (((bRts2 && aBewareRect2.Right ()>aBewareRect1.Left ()) || (bLks2 && aBewareRect2.Left ()<aBewareRect1.Right ())) && ((bUnt1 && aBewareRect1.Bottom()>aBewareRect2.Top ()) || (bObn1 && aBewareRect1.Top ()<aBewareRect2.Bottom())))) { // Fall 3.3 bForceMeeting=sal_True; if (bRts1 || bRts2) { aMeeting.X()=nXMax; bMeetingXMid=sal_False; } if (bLks1 || bLks2) { aMeeting.X()=nXMin; bMeetingXMid=sal_False; } if (bUnt1 || bUnt2) { aMeeting.Y()=nYMax; bMeetingYMid=sal_False; } if (bObn1 || bObn2) { aMeeting.Y()=nYMin; bMeetingYMid=sal_False; } } } } XPolygon aXP1(ImpCalcObjToCenter(aPt1,nAngle1,aBewareRect1,aMeeting)); XPolygon aXP2(ImpCalcObjToCenter(aPt2,nAngle2,aBewareRect2,aMeeting)); sal_uInt16 nXP1Anz=aXP1.GetPointCount(); sal_uInt16 nXP2Anz=aXP2.GetPointCount(); if (bInfo) { pInfo->nObj1Lines=nXP1Anz; if (nXP1Anz>1) pInfo->nObj1Lines--; pInfo->nObj2Lines=nXP2Anz; if (nXP2Anz>1) pInfo->nObj2Lines--; } Point aEP1(aXP1[nXP1Anz-1]); Point aEP2(aXP2[nXP2Anz-1]); FASTBOOL bInsMeetingPoint=aEP1.X()!=aEP2.X() && aEP1.Y()!=aEP2.Y(); FASTBOOL bHorzE1=aEP1.Y()==aXP1[nXP1Anz-2].Y(); // letzte Linie von XP1 horizontal? FASTBOOL bHorzE2=aEP2.Y()==aXP2[nXP2Anz-2].Y(); // letzte Linie von XP2 horizontal? if (aEP1==aEP2 && (bHorzE1 && bHorzE2 && aEP1.Y()==aEP2.Y()) || (!bHorzE1 && !bHorzE2 && aEP1.X()==aEP2.X())) { // Sonderbehandlung fuer 'I'-Verbinder nXP1Anz--; aXP1.Remove(nXP1Anz,1); nXP2Anz--; aXP2.Remove(nXP2Anz,1); bMeetingXMid=sal_False; bMeetingYMid=sal_False; } if (bInsMeetingPoint) { aXP1.Insert(XPOLY_APPEND,aMeeting,XPOLY_NORMAL); if (bInfo) { // Durch einfuegen des MeetingPoints kommen 2 weitere Linie hinzu. // Evtl. wird eine von diesen die Mittellinie. if (pInfo->nObj1Lines==pInfo->nObj2Lines) { pInfo->nObj1Lines++; pInfo->nObj2Lines++; } else { if (pInfo->nObj1Lines>pInfo->nObj2Lines) { pInfo->nObj2Lines++; pInfo->nMiddleLine=nXP1Anz-1; } else { pInfo->nObj1Lines++; pInfo->nMiddleLine=nXP1Anz; } } } } else if (bInfo && aEP1!=aEP2 && nXP1Anz+nXP2Anz>=4) { // Durch Verbinden der beiden Enden kommt eine weitere Linie hinzu. // Dies wird die Mittellinie. pInfo->nMiddleLine=nXP1Anz-1; } sal_uInt16 nNum=aXP2.GetPointCount(); if (aXP1[nXP1Anz-1]==aXP2[nXP2Anz-1] && nXP1Anz>1 && nXP2Anz>1) nNum--; while (nNum>0) { nNum--; aXP1.Insert(XPOLY_APPEND,aXP2[nNum],XPOLY_NORMAL); } sal_uInt16 nPntAnz=aXP1.GetPointCount(); char cForm=0; if (bInfo || pnQuality!=NULL) { cForm='?'; if (nPntAnz==2) cForm='I'; else if (nPntAnz==3) cForm='L'; else if (nPntAnz==4) { // Z oder U if (nAngle1==nAngle2) cForm='U'; else cForm='Z'; } else if (nPntAnz==4) { /* Ú-ż Ú-ż */ /* ... -Ů -Ů */ } else if (nPntAnz==6) { // S oder C oder ... if (nAngle1!=nAngle2) { // Fuer Typ S hat Linie2 dieselbe Richtung wie Linie4. // Bei Typ C sind die beiden genau entgegengesetzt. Point aP1(aXP1[1]); Point aP2(aXP1[2]); Point aP3(aXP1[3]); Point aP4(aXP1[4]); if (aP1.Y()==aP2.Y()) { // beide Linien Horz if ((aP1.X()<aP2.X())==(aP3.X()<aP4.X())) cForm='S'; else cForm='C'; } else { // sonst beide Linien Vert if ((aP1.Y()<aP2.Y())==(aP3.Y()<aP4.Y())) cForm='S'; else cForm='C'; } } else cForm='4'; // sonst der 3. Fall mit 5 Linien } else cForm='?'; // // Weitere Formen: if (bInfo) { pInfo->cOrthoForm=cForm; if (cForm=='I' || cForm=='L' || cForm=='Z' || cForm=='U') { pInfo->nObj1Lines=1; pInfo->nObj2Lines=1; if (cForm=='Z' || cForm=='U') { pInfo->nMiddleLine=1; } else { pInfo->nMiddleLine=0xFFFF; } } else if (cForm=='S' || cForm=='C') { pInfo->nObj1Lines=2; pInfo->nObj2Lines=2; pInfo->nMiddleLine=2; } } } if (pnQuality!=NULL) { sal_uIntPtr nQual=0; sal_uIntPtr nQual0=nQual; // Ueberlaeufe vorbeugen FASTBOOL bOverflow=sal_False; Point aPt0(aXP1[0]); for (sal_uInt16 nPntNum=1; nPntNum<nPntAnz; nPntNum++) { Point aPt1b(aXP1[nPntNum]); nQual+=Abs(aPt1b.X()-aPt0.X())+Abs(aPt1b.Y()-aPt0.Y()); if (nQual<nQual0) bOverflow=sal_True; nQual0=nQual; aPt0=aPt1b; } sal_uInt16 nTmp=nPntAnz; if (cForm=='Z') { nTmp=2; // Z-Form hat gute Qualitaet (nTmp=2 statt 4) sal_uIntPtr n1=Abs(aXP1[1].X()-aXP1[0].X())+Abs(aXP1[1].Y()-aXP1[0].Y()); sal_uIntPtr n2=Abs(aXP1[2].X()-aXP1[1].X())+Abs(aXP1[2].Y()-aXP1[1].Y()); sal_uIntPtr n3=Abs(aXP1[3].X()-aXP1[2].X())+Abs(aXP1[3].Y()-aXP1[2].Y()); // fuer moeglichst gleichlange Linien sorgen sal_uIntPtr nBesser=0; n1+=n3; n3=n2/4; if (n1>=n2) nBesser=6; else if (n1>=3*n3) nBesser=4; else if (n1>=2*n3) nBesser=2; if (aXP1[0].Y()!=aXP1[1].Y()) nBesser++; // Senkrechte Startlinie kriegt auch noch einen Pluspunkt (fuer H/V-Prio) if (nQual>nBesser) nQual-=nBesser; else nQual=0; } if (nTmp>=3) { nQual0=nQual; nQual+=(sal_uIntPtr)nTmp*0x01000000; if (nQual<nQual0 || nTmp>15) bOverflow=sal_True; } if (nPntAnz>=2) { // Austrittswinkel nochmal pruefen Point aP1(aXP1[1]); aP1-=aXP1[0]; Point aP2(aXP1[nPntAnz-2]); aP2-=aXP1[nPntAnz-1]; long nAng1=0; if (aP1.X()<0) nAng1=18000; if (aP1.Y()>0) nAng1=27000; if (aP1.Y()<0) nAng1=9000; if (aP1.X()!=0 && aP1.Y()!=0) nAng1=1; // Schraeg!?! long nAng2=0; if (aP2.X()<0) nAng2=18000; if (aP2.Y()>0) nAng2=27000; if (aP2.Y()<0) nAng2=9000; if (aP2.X()!=0 && aP2.Y()!=0) nAng2=1; // Schraeg!?! if (nAng1!=nAngle1) nIntersections++; if (nAng2!=nAngle2) nIntersections++; } // Fuer den Qualitaetscheck wieder die Original-Rects verwenden und // gleichzeitig checken, ob eins fuer die Edge-Berechnung verkleinert // wurde (z.B. Fall 2.9) aBewareRect1=rBewareRect1; aBewareRect2=rBewareRect2; for (sal_uInt16 i=0; i<nPntAnz; i++) { Point aPt1b(aXP1[i]); FASTBOOL b1=aPt1b.X()>aBewareRect1.Left() && aPt1b.X()<aBewareRect1.Right() && aPt1b.Y()>aBewareRect1.Top() && aPt1b.Y()<aBewareRect1.Bottom(); FASTBOOL b2=aPt1b.X()>aBewareRect2.Left() && aPt1b.X()<aBewareRect2.Right() && aPt1b.Y()>aBewareRect2.Top() && aPt1b.Y()<aBewareRect2.Bottom(); sal_uInt16 nInt0=nIntersections; if (i==0 || i==nPntAnz-1) { if (b1 && b2) nIntersections++; } else { if (b1) nIntersections++; if (b2) nIntersections++; } // und nun noch auf Ueberschneidungen checken if (i>0 && nInt0==nIntersections) { if (aPt0.Y()==aPt1b.Y()) { // Horizontale Linie if (aPt0.Y()>aBewareRect1.Top() && aPt0.Y()<aBewareRect1.Bottom() && ((aPt0.X()<=aBewareRect1.Left() && aPt1b.X()>=aBewareRect1.Right()) || (aPt1b.X()<=aBewareRect1.Left() && aPt0.X()>=aBewareRect1.Right()))) nIntersections++; if (aPt0.Y()>aBewareRect2.Top() && aPt0.Y()<aBewareRect2.Bottom() && ((aPt0.X()<=aBewareRect2.Left() && aPt1b.X()>=aBewareRect2.Right()) || (aPt1b.X()<=aBewareRect2.Left() && aPt0.X()>=aBewareRect2.Right()))) nIntersections++; } else { // Vertikale Linie if (aPt0.X()>aBewareRect1.Left() && aPt0.X()<aBewareRect1.Right() && ((aPt0.Y()<=aBewareRect1.Top() && aPt1b.Y()>=aBewareRect1.Bottom()) || (aPt1b.Y()<=aBewareRect1.Top() && aPt0.Y()>=aBewareRect1.Bottom()))) nIntersections++; if (aPt0.X()>aBewareRect2.Left() && aPt0.X()<aBewareRect2.Right() && ((aPt0.Y()<=aBewareRect2.Top() && aPt1b.Y()>=aBewareRect2.Bottom()) || (aPt1b.Y()<=aBewareRect2.Top() && aPt0.Y()>=aBewareRect2.Bottom()))) nIntersections++; } } aPt0=aPt1b; } if (nPntAnz<=1) nIntersections++; nQual0=nQual; nQual+=(sal_uIntPtr)nIntersections*0x10000000; if (nQual<nQual0 || nIntersections>15) bOverflow=sal_True; if (bOverflow || nQual==0xFFFFFFFF) nQual=0xFFFFFFFE; *pnQuality=nQual; } if (bInfo) { // nun die Linienversaetze auf aXP1 anwenden if (pInfo->nMiddleLine!=0xFFFF) { sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(MIDDLELINE,aXP1); if (pInfo->ImpIsHorzLine(MIDDLELINE,aXP1)) { aXP1[nIdx].Y()+=pInfo->aMiddleLine.Y(); aXP1[nIdx+1].Y()+=pInfo->aMiddleLine.Y(); } else { aXP1[nIdx].X()+=pInfo->aMiddleLine.X(); aXP1[nIdx+1].X()+=pInfo->aMiddleLine.X(); } } if (pInfo->nObj1Lines>=2) { sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ1LINE2,aXP1); if (pInfo->ImpIsHorzLine(OBJ1LINE2,aXP1)) { aXP1[nIdx].Y()+=pInfo->aObj1Line2.Y(); aXP1[nIdx+1].Y()+=pInfo->aObj1Line2.Y(); } else { aXP1[nIdx].X()+=pInfo->aObj1Line2.X(); aXP1[nIdx+1].X()+=pInfo->aObj1Line2.X(); } } if (pInfo->nObj1Lines>=3) { sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ1LINE3,aXP1); if (pInfo->ImpIsHorzLine(OBJ1LINE3,aXP1)) { aXP1[nIdx].Y()+=pInfo->aObj1Line3.Y(); aXP1[nIdx+1].Y()+=pInfo->aObj1Line3.Y(); } else { aXP1[nIdx].X()+=pInfo->aObj1Line3.X(); aXP1[nIdx+1].X()+=pInfo->aObj1Line3.X(); } } if (pInfo->nObj2Lines>=2) { sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ2LINE2,aXP1); if (pInfo->ImpIsHorzLine(OBJ2LINE2,aXP1)) { aXP1[nIdx].Y()+=pInfo->aObj2Line2.Y(); aXP1[nIdx+1].Y()+=pInfo->aObj2Line2.Y(); } else { aXP1[nIdx].X()+=pInfo->aObj2Line2.X(); aXP1[nIdx+1].X()+=pInfo->aObj2Line2.X(); } } if (pInfo->nObj2Lines>=3) { sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ2LINE3,aXP1); if (pInfo->ImpIsHorzLine(OBJ2LINE3,aXP1)) { aXP1[nIdx].Y()+=pInfo->aObj2Line3.Y(); aXP1[nIdx+1].Y()+=pInfo->aObj2Line3.Y(); } else { aXP1[nIdx].X()+=pInfo->aObj2Line3.X(); aXP1[nIdx+1].X()+=pInfo->aObj2Line3.X(); } } } // Nun mache ich ggf. aus dem Verbinder eine Bezierkurve if (eKind==SDREDGE_BEZIER && nPntAnz>2) { Point* pPt1=&aXP1[0]; Point* pPt2=&aXP1[1]; Point* pPt3=&aXP1[nPntAnz-2]; Point* pPt4=&aXP1[nPntAnz-1]; long dx1=pPt2->X()-pPt1->X(); long dy1=pPt2->Y()-pPt1->Y(); long dx2=pPt3->X()-pPt4->X(); long dy2=pPt3->Y()-pPt4->Y(); if (cForm=='L') { // nPntAnz==3 aXP1.SetFlags(1,XPOLY_CONTROL); Point aPt3(*pPt2); aXP1.Insert(2,aPt3,XPOLY_CONTROL); nPntAnz=aXP1.GetPointCount(); pPt1=&aXP1[0]; pPt2=&aXP1[1]; pPt3=&aXP1[nPntAnz-2]; pPt4=&aXP1[nPntAnz-1]; pPt2->X()-=dx1/3; pPt2->Y()-=dy1/3; pPt3->X()-=dx2/3; pPt3->Y()-=dy2/3; } else if (nPntAnz>=4 && nPntAnz<=6) { // Z oder U oder ... // fuer Alle Anderen werden die Endpunkte der Ausgangslinien // erstmal zu Kontrollpunkten. Bei nPntAnz>4 ist also noch // Nacharbeit erforderlich! aXP1.SetFlags(1,XPOLY_CONTROL); aXP1.SetFlags(nPntAnz-2,XPOLY_CONTROL); // Distanz x1.5 pPt2->X()+=dx1/2; pPt2->Y()+=dy1/2; pPt3->X()+=dx2/2; pPt3->Y()+=dy2/2; if (nPntAnz==5) { // Vor und hinter dem Mittelpunkt jeweils // noch einen Kontrollpunkt einfuegen Point aCenter(aXP1[2]); long dx1b=aCenter.X()-aXP1[1].X(); long dy1b=aCenter.Y()-aXP1[1].Y(); long dx2b=aCenter.X()-aXP1[3].X(); long dy2b=aCenter.Y()-aXP1[3].Y(); aXP1.Insert(2,aCenter,XPOLY_CONTROL); aXP1.SetFlags(3,XPOLY_SYMMTR); aXP1.Insert(4,aCenter,XPOLY_CONTROL); aXP1[2].X()-=dx1b/2; aXP1[2].Y()-=dy1b/2; aXP1[3].X()-=(dx1b+dx2b)/4; aXP1[3].Y()-=(dy1b+dy2b)/4; aXP1[4].X()-=dx2b/2; aXP1[4].Y()-=dy2b/2; } if (nPntAnz==6) { Point aPt1b(aXP1[2]); Point aPt2b(aXP1[3]); aXP1.Insert(2,aPt1b,XPOLY_CONTROL); aXP1.Insert(5,aPt2b,XPOLY_CONTROL); long dx=aPt1b.X()-aPt2b.X(); long dy=aPt1b.Y()-aPt2b.Y(); aXP1[3].X()-=dx/2; aXP1[3].Y()-=dy/2; aXP1.SetFlags(3,XPOLY_SYMMTR); //aXP1[4].X()+=dx/2; //aXP1[4].Y()+=dy/2; aXP1.Remove(4,1); // weil identisch mit aXP1[3] } } } return aXP1; } /* Nach einer einfachen Rechnung koennte es max. 64 unterschiedliche Verlaeufe mit 5 Linien, 32 mit 4 Linien, 16 mit 3, 8 mit 2 Linien und 4 mit 1 Linie geben=124. Normalisiert auf 1. Austrittswinkel nach rechts bleiben dann noch 31. Dann noch eine vertikale Spiegelung wegnormalisiert bleiben noch 16 characteristische Verlaufszuege mit 1-5 Linien: Mit 1 Linie (Typ 'I'): -- Mit 2 Linien (Typ 'L'): -Ů Mit 3 Linien (Typ 'U'): -ż (Typ 'Z'): Ú- -Ů -Ů Mit 4 Linien: 1 ist nicht plausibel, 3 ist=2 (90deg Drehung). Verbleibt 2,4 Ú-Ů Úż Ŕż Úż Úż Ú-ż -Ů -Ů -Ů -Ů -Ů -Ů Mit 5 Linien: nicht plausibel sind 1,2,4,5. 7 ist identisch mit 3 (Richtungsumkehr) Bleibt also 3,6 und 8. '4' 'S' 'C' ż Ú -ż Ú- Ú-ż Ú- Ú-Ů Ú-Ů Ú-ż Ú-ż Ŕż Ŕż -Ů ł Ú-ż Ú-ż Ŕż Ú-ż -Ů -Ů -Ů Ů -Ů Ŕ- -Ů -Ů --Ů Ŕ Ů -Ů Ů -Ů Ŕ Ů Insgesamt sind also 9 Grundtypen zu unterscheiden die den 400 Konstellationen aus Objektposition und Austrittswinkeln zuzuordnen sind. 4 der 9 Grundtypen haben eine 'Mittellinie'. Die Anzahl der zu Objektabstaende je Objekt variiert von 0-3: Mi O1 O2 Anmerkung 'I': n 0 0 'L': n 0 0 'U': n 0-1 0-1 'Z': j 0 0 4.1: j 0 1 = U+1 bzw. 1+U 4.2: n 0-2 0-2 = Z+1 '4': j 0 2 = Z+2 'S': j 1 1 = 1+Z+1 'C': n 0-3 0-3 = 1+U+1 */ void __EXPORT SdrEdgeObj::Notify(SfxBroadcaster& rBC, const SfxHint& rHint) { SfxSimpleHint* pSimple=PTR_CAST(SfxSimpleHint,&rHint); sal_uIntPtr nId=pSimple==0 ? 0 : pSimple->GetId(); FASTBOOL bDataChg=nId==SFX_HINT_DATACHANGED; FASTBOOL bDying=nId==SFX_HINT_DYING; FASTBOOL bObj1=aCon1.pObj!=NULL && aCon1.pObj->GetBroadcaster()==&rBC; FASTBOOL bObj2=aCon2.pObj!=NULL && aCon2.pObj->GetBroadcaster()==&rBC; if (bDying && (bObj1 || bObj2)) { // #35605# Dying vorher abfangen, damit AttrObj nicht // wg. vermeintlicher Vorlagenaenderung rumbroadcastet if (bObj1) aCon1.pObj=NULL; if (bObj2) aCon2.pObj=NULL; return; // Und mehr braucht hier nicht getan werden. } if ( bObj1 || bObj2 ) { bEdgeTrackUserDefined = sal_False; } SdrTextObj::Notify(rBC,rHint); if (nNotifyingCount==0) { // Hier nun auch ein VerriegelungsFlag ((SdrEdgeObj*)this)->nNotifyingCount++; SdrHint* pSdrHint=PTR_CAST(SdrHint,&rHint); if (bDataChg) { // StyleSheet geaendert ImpSetAttrToEdgeInfo(); // Werte bei Vorlagenaenderung vom Pool nach aEdgeInfo kopieren } if (bDataChg || (bObj1 && aCon1.pObj->GetPage()==pPage) || (bObj2 && aCon2.pObj->GetPage()==pPage) || (pSdrHint && pSdrHint->GetKind()==HINT_OBJREMOVED)) { // Broadcasting nur, wenn auf der selben Page Rectangle aBoundRect0; if (pUserCall!=NULL) aBoundRect0=GetCurrentBoundRect(); // #110094#-14 if (!bEdgeTrackDirty) SendRepaintBroadcast(); ImpDirtyEdgeTrack(); // only redraw here, no objectchange ActionChanged(); // BroadcastObjectChange(); SendUserCall(SDRUSERCALL_RESIZE,aBoundRect0); } ((SdrEdgeObj*)this)->nNotifyingCount--; } } /** updates edges that are connected to the edges of this object as if the connected objects send a repaint broadcast #103122# */ void SdrEdgeObj::Reformat() { if( NULL != aCon1.pObj ) { SfxSimpleHint aHint( SFX_HINT_DATACHANGED ); Notify( *const_cast<SfxBroadcaster*>(aCon1.pObj->GetBroadcaster()), aHint ); } if( NULL != aCon2.pObj ) { SfxSimpleHint aHint( SFX_HINT_DATACHANGED ); Notify( *const_cast<SfxBroadcaster*>(aCon2.pObj->GetBroadcaster()), aHint ); } } void SdrEdgeObj::operator=(const SdrObject& rObj) { SdrTextObj::operator=(rObj); *pEdgeTrack =*((SdrEdgeObj&)rObj).pEdgeTrack; bEdgeTrackDirty=((SdrEdgeObj&)rObj).bEdgeTrackDirty; aCon1 =((SdrEdgeObj&)rObj).aCon1; aCon2 =((SdrEdgeObj&)rObj).aCon2; aCon1.pObj=NULL; aCon2.pObj=NULL; aEdgeInfo=((SdrEdgeObj&)rObj).aEdgeInfo; } void SdrEdgeObj::TakeObjNameSingul(XubString& rName) const { rName=ImpGetResStr(STR_ObjNameSingulEDGE); String aName( GetName() ); if(aName.Len()) { rName += sal_Unicode(' '); rName += sal_Unicode('\''); rName += aName; rName += sal_Unicode('\''); } } void SdrEdgeObj::TakeObjNamePlural(XubString& rName) const { rName=ImpGetResStr(STR_ObjNamePluralEDGE); } basegfx::B2DPolyPolygon SdrEdgeObj::TakeXorPoly() const { basegfx::B2DPolyPolygon aPolyPolygon; if (bEdgeTrackDirty) { ((SdrEdgeObj*)this)->ImpRecalcEdgeTrack(); } if(pEdgeTrack) { aPolyPolygon.append(pEdgeTrack->getB2DPolygon()); } return aPolyPolygon; } void SdrEdgeObj::SetEdgeTrackPath( const basegfx::B2DPolyPolygon& rPoly ) { if ( !rPoly.count() ) { bEdgeTrackDirty = sal_True; bEdgeTrackUserDefined = sal_False; } else { *pEdgeTrack = XPolygon( rPoly.getB2DPolygon( 0 ) ); bEdgeTrackDirty = sal_False; bEdgeTrackUserDefined = sal_True; // #i110629# also set aRect and maSnapeRect dependent from pEdgeTrack const Rectangle aPolygonBounds(pEdgeTrack->GetBoundRect()); aRect = aPolygonBounds; maSnapRect = aPolygonBounds; } } basegfx::B2DPolyPolygon SdrEdgeObj::GetEdgeTrackPath() const { basegfx::B2DPolyPolygon aPolyPolygon; if (bEdgeTrackDirty) ((SdrEdgeObj*)this)->ImpRecalcEdgeTrack(); aPolyPolygon.append( pEdgeTrack->getB2DPolygon() ); return aPolyPolygon; } sal_uInt32 SdrEdgeObj::GetHdlCount() const { SdrEdgeKind eKind=((SdrEdgeKindItem&)(GetObjectItem(SDRATTR_EDGEKIND))).GetValue(); sal_uInt32 nHdlAnz(0L); sal_uInt32 nPntAnz(pEdgeTrack->GetPointCount()); if(nPntAnz) { nHdlAnz = 2L; if ((eKind==SDREDGE_ORTHOLINES || eKind==SDREDGE_BEZIER) && nPntAnz >= 4L) { sal_uInt32 nO1(aEdgeInfo.nObj1Lines > 0L ? aEdgeInfo.nObj1Lines - 1L : 0L); sal_uInt32 nO2(aEdgeInfo.nObj2Lines > 0L ? aEdgeInfo.nObj2Lines - 1L : 0L); sal_uInt32 nM(aEdgeInfo.nMiddleLine != 0xFFFF ? 1L : 0L); nHdlAnz += nO1 + nO2 + nM; } else if (eKind==SDREDGE_THREELINES && nPntAnz == 4L) { if(GetConnectedNode(sal_True)) nHdlAnz++; if(GetConnectedNode(sal_False)) nHdlAnz++; } } return nHdlAnz; } SdrHdl* SdrEdgeObj::GetHdl(sal_uInt32 nHdlNum) const { SdrHdl* pHdl=NULL; sal_uInt32 nPntAnz(pEdgeTrack->GetPointCount()); if (nPntAnz!=0) { if (nHdlNum==0) { pHdl=new ImpEdgeHdl((*pEdgeTrack)[0],HDL_POLY); if (aCon1.pObj!=NULL && aCon1.bBestVertex) pHdl->Set1PixMore(sal_True); } else if (nHdlNum==1) { pHdl=new ImpEdgeHdl((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],HDL_POLY); if (aCon2.pObj!=NULL && aCon2.bBestVertex) pHdl->Set1PixMore(sal_True); } else { SdrEdgeKind eKind=((SdrEdgeKindItem&)(GetObjectItem(SDRATTR_EDGEKIND))).GetValue(); if (eKind==SDREDGE_ORTHOLINES || eKind==SDREDGE_BEZIER) { sal_uInt32 nO1(aEdgeInfo.nObj1Lines > 0L ? aEdgeInfo.nObj1Lines - 1L : 0L); sal_uInt32 nO2(aEdgeInfo.nObj2Lines > 0L ? aEdgeInfo.nObj2Lines - 1L : 0L); sal_uInt32 nM(aEdgeInfo.nMiddleLine != 0xFFFF ? 1L : 0L); sal_uInt32 nNum(nHdlNum - 2L); sal_Int32 nPt(0L); pHdl=new ImpEdgeHdl(Point(),HDL_POLY); if (nNum<nO1) { nPt=nNum+1L; if (nNum==0) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ1LINE2); if (nNum==1) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ1LINE3); } else { nNum=nNum-nO1; if (nNum<nO2) { nPt=nPntAnz-3-nNum; if (nNum==0) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ2LINE2); if (nNum==1) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ2LINE3); } else { nNum=nNum-nO2; if (nNum<nM) { nPt=aEdgeInfo.nMiddleLine; ((ImpEdgeHdl*)pHdl)->SetLineCode(MIDDLELINE); } } } if (nPt>0) { Point aPos((*pEdgeTrack)[(sal_uInt16)nPt]); aPos+=(*pEdgeTrack)[(sal_uInt16)nPt+1]; aPos.X()/=2; aPos.Y()/=2; pHdl->SetPos(aPos); } else { delete pHdl; pHdl=NULL; } } else if (eKind==SDREDGE_THREELINES) { sal_uInt32 nNum(nHdlNum); if (GetConnectedNode(sal_True)==NULL) nNum++; Point aPos((*pEdgeTrack)[(sal_uInt16)nNum-1]); pHdl=new ImpEdgeHdl(aPos,HDL_POLY); if (nNum==2) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ1LINE2); if (nNum==3) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ2LINE2); } } if (pHdl!=NULL) { pHdl->SetPointNum(nHdlNum); } } return pHdl; } //////////////////////////////////////////////////////////////////////////////////////////////////// bool SdrEdgeObj::hasSpecialDrag() const { return true; } SdrObject* SdrEdgeObj::getFullDragClone() const { // use Clone operator SdrEdgeObj* pRetval = (SdrEdgeObj*)Clone(); // copy connections for clone, SdrEdgeObj::operator= does not do this pRetval->ConnectToNode(true, GetConnectedNode(true)); pRetval->ConnectToNode(false, GetConnectedNode(false)); return pRetval; } bool SdrEdgeObj::beginSpecialDrag(SdrDragStat& rDrag) const { if(!rDrag.GetHdl()) return false; rDrag.SetEndDragChangesAttributes(true); if(rDrag.GetHdl()->GetPointNum() < 2) { rDrag.SetNoSnap(true); } return true; } bool SdrEdgeObj::applySpecialDrag(SdrDragStat& rDragStat) { SdrEdgeObj* pOriginalEdge = dynamic_cast< SdrEdgeObj* >(rDragStat.GetHdl()->GetObj()); const bool bOriginalEdgeModified(pOriginalEdge == this); if(!bOriginalEdgeModified && pOriginalEdge) { // copy connections when clone is modified. This is needed because // as preparation to this modification the data from the original object // was copied to the clone using the operator=. As can be seen there, // that operator does not copy the connections (for good reason) ConnectToNode(true, pOriginalEdge->GetConnection(true).GetObject()); ConnectToNode(false, pOriginalEdge->GetConnection(false).GetObject()); } if(rDragStat.GetHdl()->GetPointNum() < 2) { // start or end point connector drag const bool bDragA(0 == rDragStat.GetHdl()->GetPointNum()); const Point aPointNow(rDragStat.GetNow()); if(rDragStat.GetPageView()) { SdrObjConnection* pDraggedOne(bDragA ? &aCon1 : &aCon2); // clear connection DisconnectFromNode(bDragA); // look for new connection ImpFindConnector(aPointNow, *rDragStat.GetPageView(), *pDraggedOne, pOriginalEdge); if(pDraggedOne->pObj) { // if found, officially connect to it; ImpFindConnector only // sets pObj hard SdrObject* pNewConnection = pDraggedOne->pObj; pDraggedOne->pObj = 0; ConnectToNode(bDragA, pNewConnection); } if(rDragStat.GetView() && !bOriginalEdgeModified) { // show IA helper, but only do this during IA, so not when the original // Edge gets modified in the last call rDragStat.GetView()->SetConnectMarker(*pDraggedOne, *rDragStat.GetPageView()); } } if(pEdgeTrack) { // change pEdgeTrack to modified position if(bDragA) { (*pEdgeTrack)[0] = aPointNow; } else { (*pEdgeTrack)[sal_uInt16(pEdgeTrack->GetPointCount()-1)] = aPointNow; } } // reset edge info's offsets, this is a end point drag aEdgeInfo.aObj1Line2 = Point(); aEdgeInfo.aObj1Line3 = Point(); aEdgeInfo.aObj2Line2 = Point(); aEdgeInfo.aObj2Line3 = Point(); aEdgeInfo.aMiddleLine = Point(); } else { // control point connector drag const ImpEdgeHdl* pEdgeHdl = (ImpEdgeHdl*)rDragStat.GetHdl(); const SdrEdgeLineCode eLineCode = pEdgeHdl->GetLineCode(); const Point aDist(rDragStat.GetNow() - rDragStat.GetStart()); sal_Int32 nDist(pEdgeHdl->IsHorzDrag() ? aDist.X() : aDist.Y()); nDist += aEdgeInfo.ImpGetLineVersatz(eLineCode, *pEdgeTrack); aEdgeInfo.ImpSetLineVersatz(eLineCode, *pEdgeTrack, nDist); } // force recalc EdgeTrack *pEdgeTrack = ImpCalcEdgeTrack(*pEdgeTrack, aCon1, aCon2, &aEdgeInfo); bEdgeTrackDirty=sal_False; // save EdgeInfos and mark object as user modified ImpSetEdgeInfoToAttr(); bEdgeTrackUserDefined = false; SetRectsDirty(); //SetChanged(); if(bOriginalEdgeModified && rDragStat.GetView()) { // hide connect marker helper again when original gets changed. // This happens at the end of the interaction rDragStat.GetView()->HideConnectMarker(); } return true; } String SdrEdgeObj::getSpecialDragComment(const SdrDragStat& rDrag) const { const bool bCreateComment(rDrag.GetView() && this == rDrag.GetView()->GetCreateObj()); if(bCreateComment) { return String(); } else { XubString aStr; ImpTakeDescriptionStr(STR_DragEdgeTail, aStr); return aStr; } } //////////////////////////////////////////////////////////////////////////////////////////////////// basegfx::B2DPolygon SdrEdgeObj::ImplAddConnectorOverlay(SdrDragMethod& rDragMethod, bool bTail1, bool bTail2, bool bDetail) const { basegfx::B2DPolygon aResult; if(bDetail) { SdrObjConnection aMyCon1(aCon1); SdrObjConnection aMyCon2(aCon2); if (bTail1) { const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aMyCon1.aObjOfs.X(), aMyCon1.aObjOfs.Y())); aMyCon1.aObjOfs.X() = basegfx::fround(aTemp.getX()); aMyCon1.aObjOfs.Y() = basegfx::fround(aTemp.getY()); } if (bTail2) { const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aMyCon2.aObjOfs.X(), aMyCon2.aObjOfs.Y())); aMyCon2.aObjOfs.X() = basegfx::fround(aTemp.getX()); aMyCon2.aObjOfs.Y() = basegfx::fround(aTemp.getY()); } SdrEdgeInfoRec aInfo(aEdgeInfo); XPolygon aXP(ImpCalcEdgeTrack(*pEdgeTrack, aMyCon1, aMyCon2, &aInfo)); if(aXP.GetPointCount()) { aResult = aXP.getB2DPolygon(); } } else { Point aPt1((*pEdgeTrack)[0]); Point aPt2((*pEdgeTrack)[sal_uInt16(pEdgeTrack->GetPointCount() - 1)]); if (aCon1.pObj && (aCon1.bBestConn || aCon1.bBestVertex)) aPt1 = aCon1.pObj->GetSnapRect().Center(); if (aCon2.pObj && (aCon2.bBestConn || aCon2.bBestVertex)) aPt2 = aCon2.pObj->GetSnapRect().Center(); if (bTail1) { const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aPt1.X(), aPt1.Y())); aPt1.X() = basegfx::fround(aTemp.getX()); aPt1.Y() = basegfx::fround(aTemp.getY()); } if (bTail2) { const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aPt2.X(), aPt2.Y())); aPt2.X() = basegfx::fround(aTemp.getX()); aPt2.Y() = basegfx::fround(aTemp.getY()); } aResult.append(basegfx::B2DPoint(aPt1.X(), aPt1.Y())); aResult.append(basegfx::B2DPoint(aPt2.X(), aPt2.Y())); } return aResult; } FASTBOOL SdrEdgeObj::BegCreate(SdrDragStat& rDragStat) { rDragStat.SetNoSnap(sal_True); pEdgeTrack->SetPointCount(2); (*pEdgeTrack)[0]=rDragStat.GetStart(); (*pEdgeTrack)[1]=rDragStat.GetNow(); if (rDragStat.GetPageView()!=NULL) { ImpFindConnector(rDragStat.GetStart(),*rDragStat.GetPageView(),aCon1,this); ConnectToNode(sal_True,aCon1.pObj); } *pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo); return sal_True; } FASTBOOL SdrEdgeObj::MovCreate(SdrDragStat& rDragStat) { sal_uInt16 nMax=pEdgeTrack->GetPointCount(); (*pEdgeTrack)[nMax-1]=rDragStat.GetNow(); if (rDragStat.GetPageView()!=NULL) { ImpFindConnector(rDragStat.GetNow(),*rDragStat.GetPageView(),aCon2,this); rDragStat.GetView()->SetConnectMarker(aCon2,*rDragStat.GetPageView()); } SetBoundRectDirty(); bSnapRectDirty=sal_True; ConnectToNode(sal_False,aCon2.pObj); *pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo); bEdgeTrackDirty=sal_False; return sal_True; } FASTBOOL SdrEdgeObj::EndCreate(SdrDragStat& rDragStat, SdrCreateCmd eCmd) { FASTBOOL bOk=(eCmd==SDRCREATE_FORCEEND || rDragStat.GetPointAnz()>=2); if (bOk) { ConnectToNode(sal_True,aCon1.pObj); ConnectToNode(sal_False,aCon2.pObj); if (rDragStat.GetView()!=NULL) { rDragStat.GetView()->HideConnectMarker(); } ImpSetEdgeInfoToAttr(); // Die Werte aus aEdgeInfo in den Pool kopieren } SetRectsDirty(); return bOk; } FASTBOOL SdrEdgeObj::BckCreate(SdrDragStat& rDragStat) { if (rDragStat.GetView()!=NULL) { rDragStat.GetView()->HideConnectMarker(); } return sal_False; } void SdrEdgeObj::BrkCreate(SdrDragStat& rDragStat) { if (rDragStat.GetView()!=NULL) { rDragStat.GetView()->HideConnectMarker(); } } basegfx::B2DPolyPolygon SdrEdgeObj::TakeCreatePoly(const SdrDragStat& /*rStatDrag*/) const { basegfx::B2DPolyPolygon aRetval; aRetval.append(pEdgeTrack->getB2DPolygon()); return aRetval; } Pointer SdrEdgeObj::GetCreatePointer() const { return Pointer(POINTER_DRAW_CONNECT); } FASTBOOL SdrEdgeObj::ImpFindConnector(const Point& rPt, const SdrPageView& rPV, SdrObjConnection& rCon, const SdrEdgeObj* pThis, OutputDevice* pOut) { rCon.ResetVars(); if (pOut==NULL) pOut=rPV.GetView().GetFirstOutputDevice(); // GetWin(0); if (pOut==NULL) return sal_False; SdrObjList* pOL=rPV.GetObjList(); const SetOfByte& rVisLayer=rPV.GetVisibleLayers(); // Sensitiver Bereich der Konnektoren ist doppelt so gross wie die Handles: sal_uInt16 nMarkHdSiz=rPV.GetView().GetMarkHdlSizePixel(); Size aHalfConSiz(nMarkHdSiz,nMarkHdSiz); aHalfConSiz=pOut->PixelToLogic(aHalfConSiz); Size aHalfCenterSiz(2*aHalfConSiz.Width(),2*aHalfConSiz.Height()); Rectangle aMouseRect(rPt,rPt); aMouseRect.Left() -=aHalfConSiz.Width(); aMouseRect.Top() -=aHalfConSiz.Height(); aMouseRect.Right() +=aHalfConSiz.Width(); aMouseRect.Bottom()+=aHalfConSiz.Height(); sal_uInt16 nBoundHitTol=(sal_uInt16)aHalfConSiz.Width()/2; if (nBoundHitTol==0) nBoundHitTol=1; sal_uIntPtr no=pOL->GetObjCount(); FASTBOOL bFnd=sal_False; SdrObjConnection aTestCon; SdrObjConnection aBestCon; FASTBOOL bTestBoundHit=sal_False; //int bBestBoundHit=sal_False; while (no>0 && !bFnd) { // Problem: Gruppenobjekt mit verschiedenen Layern liefert LayerID 0 !!!! no--; SdrObject* pObj=pOL->GetObj(no); if (rVisLayer.IsSet(pObj->GetLayer()) && pObj->IsVisible() && // only visible objects (pThis==NULL || pObj!=(SdrObject*)pThis) && // nicht an mich selbst connecten pObj->IsNode()) { Rectangle aObjBound(pObj->GetCurrentBoundRect()); if (aObjBound.IsOver(aMouseRect)) { aTestCon.ResetVars(); bTestBoundHit=sal_False; FASTBOOL bEdge=HAS_BASE(SdrEdgeObj,pObj); // kein BestCon fuer Edge // Die Userdefined Konnektoren haben absolute Prioritaet. // Danach kommt Vertex, Corner und Mitte(Best) gleich priorisiert. // Zum Schluss kommt noch ein HitTest aufs Obj. const SdrGluePointList* pGPL=pObj->GetGluePointList(); sal_uInt16 nConAnz=pGPL==NULL ? 0 : pGPL->GetCount(); sal_uInt16 nGesAnz=nConAnz+9; FASTBOOL bUserFnd=sal_False; sal_uIntPtr nBestDist=0xFFFFFFFF; for (sal_uInt16 i=0; i<nGesAnz; i++) { FASTBOOL bUser=i<nConAnz; FASTBOOL bVertex=i>=nConAnz+0 && i<nConAnz+4; FASTBOOL bCorner=i>=nConAnz+4 && i<nConAnz+8; FASTBOOL bCenter=i==nConAnz+8; FASTBOOL bOk=sal_False; Point aConPos; sal_uInt16 nConNum=i; if (bUser) { const SdrGluePoint& rGP=(*pGPL)[nConNum]; aConPos=rGP.GetAbsolutePos(*pObj); nConNum=rGP.GetId(); bOk=sal_True; } else if (bVertex && !bUserFnd) { nConNum=nConNum-nConAnz; if (rPV.GetView().IsAutoVertexConnectors()) { SdrGluePoint aPt(pObj->GetVertexGluePoint(nConNum)); aConPos=aPt.GetAbsolutePos(*pObj); bOk=sal_True; } else i+=3; } else if (bCorner && !bUserFnd) { nConNum-=nConAnz+4; if (rPV.GetView().IsAutoCornerConnectors()) { SdrGluePoint aPt(pObj->GetCornerGluePoint(nConNum)); aConPos=aPt.GetAbsolutePos(*pObj); bOk=sal_True; } else i+=3; } else if (bCenter && !bUserFnd && !bEdge) { // #109007# // Suppress default connect at object center if(!pThis || !pThis->GetSuppressDefaultConnect()) { // Edges nicht! nConNum=0; aConPos=aObjBound.Center(); bOk=sal_True; } } if (bOk && aMouseRect.IsInside(aConPos)) { if (bUser) bUserFnd=sal_True; bFnd=sal_True; sal_uIntPtr nDist=(sal_uIntPtr)Abs(aConPos.X()-rPt.X())+(sal_uIntPtr)Abs(aConPos.Y()-rPt.Y()); if (nDist<nBestDist) { nBestDist=nDist; aTestCon.pObj=pObj; aTestCon.nConId=nConNum; aTestCon.bAutoCorner=bCorner; aTestCon.bAutoVertex=bVertex; aTestCon.bBestConn=sal_False; // bCenter; aTestCon.bBestVertex=bCenter; } } } // Falls kein Konnektor getroffen wird nochmal // HitTest versucht fuer BestConnector (=bCenter) if(!bFnd && !bEdge && SdrObjectPrimitiveHit(*pObj, rPt, nBoundHitTol, rPV, &rVisLayer, false)) { // #109007# // Suppress default connect at object inside bound if(!pThis || !pThis->GetSuppressDefaultConnect()) { bFnd=sal_True; aTestCon.pObj=pObj; aTestCon.bBestConn=sal_True; } } if (bFnd) { Rectangle aMouseRect2(rPt,rPt); aMouseRect.Left() -=nBoundHitTol; aMouseRect.Top() -=nBoundHitTol; aMouseRect.Right() +=nBoundHitTol; aMouseRect.Bottom()+=nBoundHitTol; bTestBoundHit=aObjBound.IsOver(aMouseRect2); } } } } rCon=aTestCon; return bFnd; } void SdrEdgeObj::NbcSetSnapRect(const Rectangle& rRect) { const Rectangle aOld(GetSnapRect()); if(aOld != rRect) { if(aRect.IsEmpty() && 0 == pEdgeTrack->GetPointCount()) { // #i110629# When initializing, do not scale on empty Rectangle; this // will mirror the underlying text object (!) aRect = rRect; maSnapRect = rRect; } else { long nMulX = rRect.Right() - rRect.Left(); long nDivX = aOld.Right() - aOld.Left(); long nMulY = rRect.Bottom() - rRect.Top(); long nDivY = aOld.Bottom() - aOld.Top(); if ( nDivX == 0 ) { nMulX = 1; nDivX = 1; } if ( nDivY == 0 ) { nMulY = 1; nDivY = 1; } Fraction aX(nMulX, nDivX); Fraction aY(nMulY, nDivY); NbcResize(aOld.TopLeft(), aX, aY); NbcMove(Size(rRect.Left() - aOld.Left(), rRect.Top() - aOld.Top())); } } } void SdrEdgeObj::NbcMove(const Size& rSiz) { SdrTextObj::NbcMove(rSiz); MoveXPoly(*pEdgeTrack,rSiz); } void SdrEdgeObj::NbcResize(const Point& rRefPnt, const Fraction& aXFact, const Fraction& aYFact) { SdrTextObj::NbcResize(rRefPnt,aXFact,aXFact); ResizeXPoly(*pEdgeTrack,rRefPnt,aXFact,aYFact); // #75371# if resize is not from paste, forget user distances if(!GetModel()->IsPasteResize()) { // #75735# aEdgeInfo.aObj1Line2 = Point(); aEdgeInfo.aObj1Line3 = Point(); aEdgeInfo.aObj2Line2 = Point(); aEdgeInfo.aObj2Line3 = Point(); aEdgeInfo.aMiddleLine = Point(); } } // #54102# added rotation support void SdrEdgeObj::NbcRotate(const Point& rRef, long nWink, double sn, double cs) { if(bEdgeTrackUserDefined) { // #120437# special handling when track is imported, apply // transformation directly to imported track. SdrTextObj::NbcRotate(rRef, nWink, sn, cs); RotateXPoly(*pEdgeTrack, rRef, sn, cs); } else { // handle start and end point if not connected FASTBOOL bCon1=aCon1.pObj!=NULL && aCon1.pObj->GetPage()==pPage; FASTBOOL bCon2=aCon2.pObj!=NULL && aCon2.pObj->GetPage()==pPage; if(!bCon1 && pEdgeTrack) { RotatePoint((*pEdgeTrack)[0],rRef,sn,cs); ImpDirtyEdgeTrack(); } if(!bCon2 && pEdgeTrack) { sal_uInt16 nPntAnz = pEdgeTrack->GetPointCount(); RotatePoint((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],rRef,sn,cs); ImpDirtyEdgeTrack(); } } } // #54102# added mirror support void SdrEdgeObj::NbcMirror(const Point& rRef1, const Point& rRef2) { if(bEdgeTrackUserDefined) { // #120437# special handling when track is imported, apply // transformation directly to imported track. SdrTextObj::NbcMirror(rRef1, rRef2); MirrorXPoly(*pEdgeTrack, rRef1, rRef2); } else { // handle start and end point if not connected FASTBOOL bCon1=aCon1.pObj!=NULL && aCon1.pObj->GetPage()==pPage; FASTBOOL bCon2=aCon2.pObj!=NULL && aCon2.pObj->GetPage()==pPage; if(!bCon1 && pEdgeTrack) { MirrorPoint((*pEdgeTrack)[0],rRef1,rRef2); ImpDirtyEdgeTrack(); } if(!bCon2 && pEdgeTrack) { sal_uInt16 nPntAnz = pEdgeTrack->GetPointCount(); MirrorPoint((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],rRef1,rRef2); ImpDirtyEdgeTrack(); } } } // #54102# added shear support void SdrEdgeObj::NbcShear(const Point& rRef, long nWink, double tn, FASTBOOL bVShear) { if(bEdgeTrackUserDefined) { // #120437# special handling when track is imported, apply // transformation directly to imported track. SdrTextObj::NbcShear(rRef, nWink, tn, bVShear); ShearXPoly(*pEdgeTrack, rRef, tn, bVShear); } else { // handle start and end point if not connected FASTBOOL bCon1=aCon1.pObj!=NULL && aCon1.pObj->GetPage()==pPage; FASTBOOL bCon2=aCon2.pObj!=NULL && aCon2.pObj->GetPage()==pPage; if(!bCon1 && pEdgeTrack) { ShearPoint((*pEdgeTrack)[0],rRef,tn,bVShear); ImpDirtyEdgeTrack(); } if(!bCon2 && pEdgeTrack) { sal_uInt16 nPntAnz = pEdgeTrack->GetPointCount(); ShearPoint((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],rRef,tn,bVShear); ImpDirtyEdgeTrack(); } } } SdrObject* SdrEdgeObj::DoConvertToPolyObj(sal_Bool bBezier, bool bAddText) const { basegfx::B2DPolyPolygon aPolyPolygon; aPolyPolygon.append(pEdgeTrack->getB2DPolygon()); SdrObject* pRet = ImpConvertMakeObj(aPolyPolygon, sal_False, bBezier); if(bAddText) { pRet = ImpConvertAddText(pRet, bBezier); } return pRet; } sal_uInt32 SdrEdgeObj::GetSnapPointCount() const { return 2L; } Point SdrEdgeObj::GetSnapPoint(sal_uInt32 i) const { ((SdrEdgeObj*)this)->ImpUndirtyEdgeTrack(); sal_uInt16 nAnz=pEdgeTrack->GetPointCount(); if (i==0) return (*pEdgeTrack)[0]; else return (*pEdgeTrack)[nAnz-1]; } sal_Bool SdrEdgeObj::IsPolyObj() const { return sal_False; } sal_uInt32 SdrEdgeObj::GetPointCount() const { return 0L; } Point SdrEdgeObj::GetPoint(sal_uInt32 i) const { ((SdrEdgeObj*)this)->ImpUndirtyEdgeTrack(); sal_uInt16 nAnz=pEdgeTrack->GetPointCount(); if (0L == i) return (*pEdgeTrack)[0]; else return (*pEdgeTrack)[nAnz-1]; } void SdrEdgeObj::NbcSetPoint(const Point& rPnt, sal_uInt32 i) { // ToDo: Umconnekten fehlt noch ImpUndirtyEdgeTrack(); sal_uInt16 nAnz=pEdgeTrack->GetPointCount(); if (0L == i) (*pEdgeTrack)[0]=rPnt; if (1L == i) (*pEdgeTrack)[nAnz-1]=rPnt; SetEdgeTrackDirty(); SetRectsDirty(); } SdrEdgeObjGeoData::SdrEdgeObjGeoData() { pEdgeTrack=new XPolygon; } SdrEdgeObjGeoData::~SdrEdgeObjGeoData() { delete pEdgeTrack; } SdrObjGeoData* SdrEdgeObj::NewGeoData() const { return new SdrEdgeObjGeoData; } void SdrEdgeObj::SaveGeoData(SdrObjGeoData& rGeo) const { SdrTextObj::SaveGeoData(rGeo); SdrEdgeObjGeoData& rEGeo=(SdrEdgeObjGeoData&)rGeo; rEGeo.aCon1 =aCon1; rEGeo.aCon2 =aCon2; *rEGeo.pEdgeTrack =*pEdgeTrack; rEGeo.bEdgeTrackDirty=bEdgeTrackDirty; rEGeo.bEdgeTrackUserDefined=bEdgeTrackUserDefined; rEGeo.aEdgeInfo =aEdgeInfo; } void SdrEdgeObj::RestGeoData(const SdrObjGeoData& rGeo) { SdrTextObj::RestGeoData(rGeo); SdrEdgeObjGeoData& rEGeo=(SdrEdgeObjGeoData&)rGeo; if (aCon1.pObj!=rEGeo.aCon1.pObj) { if (aCon1.pObj!=NULL) aCon1.pObj->RemoveListener(*this); aCon1=rEGeo.aCon1; if (aCon1.pObj!=NULL) aCon1.pObj->AddListener(*this); } if (aCon2.pObj!=rEGeo.aCon2.pObj) { if (aCon2.pObj!=NULL) aCon2.pObj->RemoveListener(*this); aCon2=rEGeo.aCon2; if (aCon2.pObj!=NULL) aCon2.pObj->AddListener(*this); } *pEdgeTrack =*rEGeo.pEdgeTrack; bEdgeTrackDirty=rEGeo.bEdgeTrackDirty; bEdgeTrackUserDefined=rEGeo.bEdgeTrackUserDefined; aEdgeInfo =rEGeo.aEdgeInfo; } Point SdrEdgeObj::GetTailPoint( sal_Bool bTail ) const { if( pEdgeTrack && pEdgeTrack->GetPointCount()!=0) { const XPolygon& rTrack0 = *pEdgeTrack; if(bTail) { return rTrack0[0]; } else { const sal_uInt16 nSiz = rTrack0.GetPointCount() - 1; return rTrack0[nSiz]; } } else { if(bTail) return aOutRect.TopLeft(); else return aOutRect.BottomRight(); } } void SdrEdgeObj::SetTailPoint( sal_Bool bTail, const Point& rPt ) { ImpSetTailPoint( bTail, rPt ); SetChanged(); } /** this method is used by the api to set a glue point for a connection nId == -1 : The best default point is automaticly choosen 0 <= nId <= 3 : One of the default points is choosen nId >= 4 : A user defined glue point is choosen */ void SdrEdgeObj::setGluePointIndex( sal_Bool bTail, sal_Int32 nIndex /* = -1 */ ) { Rectangle aBoundRect0; if (pUserCall!=NULL) aBoundRect0=GetCurrentBoundRect(); // #110094#-14 BroadcastObjectChange(); SdrObjConnection& rConn1 = GetConnection( bTail ); rConn1.SetAutoVertex( nIndex >= 0 && nIndex <= 3 ); rConn1.SetBestConnection( nIndex < 0 ); rConn1.SetBestVertex( nIndex < 0 ); if( nIndex > 3 ) { // nIndex -= 4; nIndex -= 3; // SJ: the start api index is 0, whereas the implementation in svx starts from 1 // for user defined glue points we have // to get the id for this index first const SdrGluePointList* pList = rConn1.GetObject() ? rConn1.GetObject()->GetGluePointList() : NULL; if( pList == NULL || SDRGLUEPOINT_NOTFOUND == pList->FindGluePoint((sal_uInt16)nIndex) ) return; } else if( nIndex < 0 ) { nIndex = 0; } rConn1.SetConnectorId( (sal_uInt16)nIndex ); SetChanged(); SetRectsDirty(); ImpRecalcEdgeTrack(); // bEdgeTrackDirty=sal_True; } /** this method is used by the api to return a glue point id for a connection. See setGluePointId for possible return values */ sal_Int32 SdrEdgeObj::getGluePointIndex( sal_Bool bTail ) { SdrObjConnection& rConn1 = GetConnection( bTail ); sal_Int32 nId = -1; if( !rConn1.IsBestConnection() ) { nId = rConn1.GetConnectorId(); if( !rConn1.IsAutoVertex() ) // nId += 4; nId += 3; // SJ: the start api index is 0, whereas the implementation in svx starts from 1 } return nId; } // #102344# Implementation was missing; edge track needs to be invalidated additionally. void SdrEdgeObj::NbcSetAnchorPos(const Point& rPnt) { // call parent functionality SdrTextObj::NbcSetAnchorPos(rPnt); // Additionally, invalidate edge track ImpDirtyEdgeTrack(); } sal_Bool SdrEdgeObj::TRGetBaseGeometry(basegfx::B2DHomMatrix& rMatrix, basegfx::B2DPolyPolygon& rPolyPolygon) const { // use base method from SdrObject, it's not rotatable and // a call to GetSnapRect() is used. That's what we need for Connector. return SdrObject::TRGetBaseGeometry(rMatrix, rPolyPolygon); } void SdrEdgeObj::TRSetBaseGeometry(const basegfx::B2DHomMatrix& rMatrix, const basegfx::B2DPolyPolygon& rPolyPolygon) { // evtl. take care for existing connections. For now, just use the // implementation from SdrObject. SdrObject::TRSetBaseGeometry(rMatrix, rPolyPolygon); } // for geometry access ::basegfx::B2DPolygon SdrEdgeObj::getEdgeTrack() const { if(bEdgeTrackDirty) { const_cast< SdrEdgeObj* >(this)->ImpRecalcEdgeTrack(); } if(pEdgeTrack) { return pEdgeTrack->getB2DPolygon(); } else { return ::basegfx::B2DPolygon(); } } ////////////////////////////////////////////////////////////////////////////// // eof