/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_basegfx.hxx" // autogenerated file with codegen.pl #include "preextstl.h" #include "gtest/gtest.h" #include "postextstl.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ::basegfx; namespace basegfx2d { class b2dsvgdimpex : public ::testing::Test { protected: ::rtl::OUString aPath0; ::rtl::OUString aPath1; ::rtl::OUString aPath2; ::rtl::OUString aPath3; public: // initialise your test code values here. virtual void SetUp() { // simple rectangle aPath0 = ::rtl::OUString::createFromAscii( "M 10 10-10 10-10-10 10-10Z" ); // simple bezier polygon aPath1 = ::rtl::OUString::createFromAscii( "m11430 0c-8890 3810 5715 6985 5715 6985 " "0 0-17145-1905-17145-1905 0 0 22860-10160 " "16510 6350-6350 16510-3810-11430-3810-11430z" ); // '@' as a bezier polygon aPath2 = ::rtl::OUString::createFromAscii( "m1917 1114c-89-189-233-284-430-284-167 " "0-306 91-419 273-113 182-170 370-170 564 " "0 145 33 259 98 342 65 84 150 126 257 126 " "77 0 154-19 231-57 77-38 147-97 210-176 63" "-79 99-143 109-190 38-199 76-398 114-598z" "m840 1646c-133 73-312 139-537 197-225 57" "-440 86-644 87-483-1-866-132-1150-392-284" "-261-426-619-426-1076 0-292 67-560 200-803 " "133-243 321-433 562-569 241-136 514-204 821" "-204 405 0 739 125 1003 374 264 250 396 550 " "396 899 0 313-88 576-265 787-177 212-386 318" "-627 318-191 0-308-94-352-281-133 187-315 281" "-546 281-172 0-315-67-428-200-113-133-170-301" "-170-505 0-277 90-527 271-751 181-223 394" "-335 640-335 196 0 353 83 470 250 13-68 26" "-136 41-204 96 0 192 0 288 0-74 376-148 752" "-224 1128-21 101-31 183-31 245 0 39 9 70 26 " "93 17 24 39 36 67 36 145 0 279-80 400-240 121" "-160 182-365 182-615 0-288-107-533-322-734" "-215-201-487-301-816-301-395 0-715 124-960 " "373-245 249-368 569-368 958 0 385 119 685 " "357 900 237 216 557 324 958 325 189-1 389-27 " "600-77 211-52 378-110 503-174 27 70 54 140 81 210z" ); // first part of 'Hello World' as a line polygon aPath3 = ::rtl::OUString::createFromAscii( "m1598 125h306v2334h-306v-1105h-1293v1105h-305v" "-2334h305v973h1293zm2159 1015 78-44 85 235-91 " "47-91 40-90 34-90 29-89 21-88 16-88 10-88 3-102" "-4-97-12-91-19-85-26-40-16-39-18-38-20-36-22-34" "-24-33-26-32-27-30-30-29-31-27-33-25-33-23-36-21" "-36-19-38-18-40-16-40-26-86-18-91-11-97-4-103 3" "-98 11-94 17-89 24-84 31-79 37-75 22-35 23-34 24" "-33 27-32 28-30 29-28 31-27 31-24 33-22 34-21 35" "-18 37-17 38-14 38-13 41-11 41-8 86-12 91-4 82 4 " "78 10 37 9 37 9 36 12 35 14 33 15 33 17 32 19 31 " "21 30 22 30 25 55 54 26 29 24 31 22 32 21 33 19 " "34 18 36 30 74 23 80 17 84 10 89 3 94v78h-1277l6 " "75 10 70 14 66 19 62 23 57 13 26 14 26 15 25 17 " "23 17 22 19 21 19 20 21 18 21 18 23 16 23 14 24 " "14 26 12 26 11 27 10 28 8 59 13 63 7 67 3 80-3 81" "-9 79-14 80-21 78-26 79-32zm-1049-808-12 53h963l" "-7-51-11-49-14-46-17-43-21-40-24-38-27-36-31-32" "-33-29-35-25-37-22-38-17-40-14-41-9-42-6-44-2-48 " "2-46 6-44 9-42 13-40 17-38 21-36 24-34 28-32 32" "-29 34-26 38-23 41-20 44-17 47zm1648-1293h288v" "2459h-288zm752-2459h288v2459h-288zm1286-1750 86-11 " "91-4 91 4 85 12 42 8 39 11 39 13 38 14 36 17 35 18 " "34 20 33 23 31 24 30 26 29 28 28 30 26 32 25 33 23 " "34 21 35 37 75 31 80 24 84 16 90 11 94 3 100-3 100" "-11 95-16 89-24 85-31 80-37 74-21 35-23 35-25 32-26 " "32-28 30-29 28-30 26-31 24-33 22-34 21-35 18-36 17" "-38 14-39 13-39 10-42 9-85 12-91 4-91-4-86-12-41-9" "-40-10-39-13-37-14-36-17-35-18-34-21-33-22-31-24-30" "-26-29-28-28-30-26-32-25-32-23-35-21-35-38-74-30-80" "-24-85-17-89-11-95-3-100 3-101 11-95 17-90 24-85 30" "-79 38-75 21-35 23-35 25-32 26-32 28-30 29-28 30-26 " "31-24 33-22 34-20 35-18 36-16 37-15 39-12 40-11z" ); } virtual void TearDown() { } }; // class b2dsvgdimpex TEST_F(b2dsvgdimpex,impex) { B2DPolyPolygon aPoly; ::rtl::OUString aExport; ASSERT_TRUE(tools::importFromSvgD( aPoly, aPath0, false, 0 )) << "importing simple rectangle from SVG-D"; aExport = tools::exportToSvgD( aPoly, true, true, false ); const char* sExportString = "m10 10h-20v-20h20z"; ASSERT_TRUE(!aExport.compareToAscii(sExportString) ) << "exporting rectangle to SVG-D"; ASSERT_TRUE(tools::importFromSvgD( aPoly, aExport, false, 0 )) << "importing simple rectangle from SVG-D (round-trip"; aExport = tools::exportToSvgD( aPoly, true, true, false ); ASSERT_TRUE(!aExport.compareToAscii(sExportString)) << "exporting rectangle to SVG-D (round-trip)"; ASSERT_TRUE(tools::importFromSvgD( aPoly, aPath1, false, 0 )) << "importing simple bezier polygon from SVG-D"; aExport = tools::exportToSvgD( aPoly, true, true, false ); // Adaptions for B2DPolygon bezier change (see #i77162#): // // The import/export of aPath1 does not reproduce aExport again. This is // correct since aPath1 contains a segment with non-used control points // which gets exported now correctly as 'l' and also a point (#4, index 3) // with C2 continuity which produces a 's' staement now. // // The old SVGexport identified nun-used ControlVectors erraneously as bezier segments // because the 2nd vector at the start point was used, even when added // with start point was identical to end point. Exactly for that reason // i reworked the B2DPolygon to use prev, next control points. // // so for correct unit test i add the new exported string here as sExportStringSimpleBezier // and compare to it. const char* sExportStringSimpleBezier = "m11430 0c-8890 3810 5715 6985 5715 6985" "l-17145-1905c0 0 22860-10160 16510 6350" "s-3810-11430-3810-11430z"; ASSERT_TRUE(!aExport.compareToAscii(sExportStringSimpleBezier)) << "exporting bezier polygon to SVG-D"; // Adaptions for B2DPolygon bezier change (see #i77162#): // // a 2nd good test is that re-importing of aExport has to create the same // B2DPolPolygon again: B2DPolyPolygon aReImport; ASSERT_TRUE(tools::importFromSvgD( aReImport, aExport, false, 0)) << "importing simple bezier polygon from SVG-D"; ASSERT_TRUE(aReImport == aPoly) << "re-imported polygon needs to be identical"; ASSERT_TRUE(tools::importFromSvgD( aPoly, aPath2, false, 0)) << "importing '@' from SVG-D"; aExport = tools::exportToSvgD( aPoly, true, true, false ); // Adaptions for B2DPolygon bezier change (see #i77162#): // // same here, the corrected export with the corrected B2DPolygon is simply more efficient, // so i needed to change the compare string. Also adding the re-import comparison below. const char* sExportString1 = "m1917 1114c-89-189-233-284-430-284-167 0-306 91-419 273s-170 370-17" "0 564c0 145 33 259 98 342 65 84 150 126 257 126q115.5 0 231-57s147-97 210-176 99-143 109-190c38-199 76-398 114" "-598zm840 1646c-133 73-312 139-537 197-225 57-440 86-644 87-483-1-866-132-1150-392-284-261-426-619-426-1076 0-" "292 67-560 200-803s321-433 562-569 514-204 821-204c405 0 739 125 1003 374 264 250 396 550 396 899 0 313-88 576" "-265 787q-265.5 318-627 318c-191 0-308-94-352-281-133 187-315 281-546 281-172 0-315-67-428-200s-170-301-170-50" "5c0-277 90-527 271-751 181-223 394-335 640-335 196 0 353 83 470 250 13-68 26-136 41-204q144 0 288 0c-74 376-14" "8 752-224 1128-21 101-31 183-31 245 0 39 9 70 26 93 17 24 39 36 67 36 145 0 279-80 400-240s182-365 182-615c0-2" "88-107-533-322-734s-487-301-816-301c-395 0-715 124-960 373s-368 569-368 958q0 577.5 357 900c237 216 557 324 95" "8 325 189-1 389-27 600-77 211-52 378-110 503-174q40.5 105 81 210z"; ASSERT_TRUE(tools::importFromSvgD( aReImport, aExport, false, 0)) << "re-importing '@' from SVG-D"; ASSERT_TRUE(aReImport == aPoly) << "re-imported '@' needs to be identical"; ASSERT_TRUE(!aExport.compareToAscii(sExportString1)) << "exporting '@' to SVG-D"; ASSERT_TRUE(tools::importFromSvgD( aPoly, aExport, false, 0 )) << "importing '@' from SVG-D (round-trip)"; aExport = tools::exportToSvgD( aPoly, true, true, false ); ASSERT_TRUE(!aExport.compareToAscii(sExportString1)) << "exporting '@' to SVG-D (round-trip)"; ASSERT_TRUE(tools::importFromSvgD( aPoly, aPath3, false, 0 )) << "importing complex polygon from SVG-D"; aExport = tools::exportToSvgD( aPoly, true, true, false ); const char* sExportString2 = "m1598 125h306v2334h-306v-1105h-1293v1105h-305v-2334h305v973h1293" "zm2159 1015 78-44 85 235-91 47-91 40-90 34-90 29-89 21-88 16-88 10-88 3-102-4-97" "-12-91-19-85-26-40-16-39-18-38-20-36-22-34-24-33-26-32-27-30-30-29-31-27-33-25-3" "3-23-36-21-36-19-38-18-40-16-40-26-86-18-91-11-97-4-103 3-98 11-94 17-89 24-84 3" "1-79 37-75 22-35 23-34 24-33 27-32 28-30 29-28 31-27 31-24 33-22 34-21 35-18 37-" "17 38-14 38-13 41-11 41-8 86-12 91-4 82 4 78 10 37 9 37 9 36 12 35 14 33 15 33 1" "7 32 19 31 21 30 22 30 25 55 54 26 29 24 31 22 32 21 33 19 34 18 36 30 74 23 80 " "17 84 10 89 3 94v78h-1277l6 75 10 70 14 66 19 62 23 57 13 26 14 26 15 25 17 23 1" "7 22 19 21 19 20 21 18 21 18 23 16 23 14 24 14 26 12 26 11 27 10 28 8 59 13 63 7" " 67 3 80-3 81-9 79-14 80-21 78-26 79-32zm-1049-808-12 53h963l-7-51-11-49-14-46-1" "7-43-21-40-24-38-27-36-31-32-33-29-35-25-37-22-38-17-40-14-41-9-42-6-44-2-48 2-4" "6 6-44 9-42 13-40 17-38 21-36 24-34 28-32 32-29 34-26 38-23 41-20 44-17 47zm1648" "-1293h288v2459h-288zm752-2459h288v2459h-288zm1286-1750 86-11 91-4 91 4 85 12 42 " "8 39 11 39 13 38 14 36 17 35 18 34 20 33 23 31 24 30 26 29 28 28 30 26 32 25 33 " "23 34 21 35 37 75 31 80 24 84 16 90 11 94 3 100-3 100-11 95-16 89-24 85-31 80-37" " 74-21 35-23 35-25 32-26 32-28 30-29 28-30 26-31 24-33 22-34 21-35 18-36 17-38 1" "4-39 13-39 10-42 9-85 12-91 4-91-4-86-12-41-9-40-10-39-13-37-14-36-17-35-18-34-2" "1-33-22-31-24-30-26-29-28-28-30-26-32-25-32-23-35-21-35-38-74-30-80-24-85-17-89-" "11-95-3-100 3-101 11-95 17-90 24-85 30-79 38-75 21-35 23-35 25-32 26-32 28-30 29" "-28 30-26 31-24 33-22 34-20 35-18 36-16 37-15 39-12 40-11z"; ASSERT_TRUE(!aExport.compareToAscii(sExportString2)) << "exporting complex polygon to SVG-D"; ASSERT_TRUE(tools::importFromSvgD( aPoly, aExport, false, 0 )) << "importing complex polygon from SVG-D (round-trip)"; aExport = tools::exportToSvgD( aPoly, true, true, false ); ASSERT_TRUE(!aExport.compareToAscii(sExportString2)) << "exporting complex polygon to SVG-D (round-trip)"; const B2DPolygon aRect( tools::createPolygonFromRect( B2DRange(0.0,0.0,4000.0,4000.0) )); aExport = tools::exportToSvgD( B2DPolyPolygon(aRect), false, false, false ); const char* sExportStringRect = "M0 0H4000V4000H0Z"; ASSERT_TRUE(!aExport.compareToAscii(sExportStringRect)) << "exporting to rectangle svg-d string"; } class b2dpolyrange : public ::testing::Test { public: virtual void SetUp() {} virtual void TearDown() {} }; TEST_F(b2dpolyrange, check) { B2DPolyRange aRange; aRange.appendElement(B2DRange(0,0,1,1),ORIENTATION_POSITIVE); aRange.appendElement(B2DRange(2,2,3,3),ORIENTATION_POSITIVE); ASSERT_TRUE(aRange.count() == 2) << "simple poly range - count"; ASSERT_TRUE(aRange.getElement(0).head == B2DRange(0,0,1,1)) << "simple poly range - first element"; ASSERT_TRUE(aRange.getElement(1).head == B2DRange(2,2,3,3)) << "simple poly range - second element"; // B2DPolyRange relies on correctly orientated rects const B2DRange aRect(0,0,1,1); ASSERT_TRUE(tools::getOrientation(tools::createPolygonFromRect(aRect)) == ORIENTATION_POSITIVE ) << "createPolygonFromRect - correct orientation"; } class b2dbeziertools : public ::testing::Test { protected: B2DCubicBezier aHalfCircle; // not exactly, but a look-alike B2DCubicBezier aQuarterCircle; // not exactly, but a look-alike B2DCubicBezier aLoop; // identical endpoints, curve goes back to where it started B2DCubicBezier aStraightLineDistinctEndPoints; // truly a line B2DCubicBezier aStraightLineDistinctEndPoints2; // truly a line, with slightly different control points B2DCubicBezier aStraightLineIdenticalEndPoints; // degenerate case of aLoop B2DCubicBezier aStraightLineIdenticalEndPoints2;// degenerate case of aLoop, with slightly different control points B2DCubicBezier aCrossing; // curve self-intersects somewhere in the middle B2DCubicBezier aCusp; // curve has a point of undefined tangency public: // initialise your test code values here. virtual void SetUp() { const B2DPoint a00(0.0, 0.0); const B2DPoint a10(1.0, 0.0); const B2DPoint a11(1.0, 1.0); const B2DPoint a01(0.0, 1.0); const B2DPoint middle( 0.5, 0.5 ); const B2DPoint quarterDown( 0.25, 0.25 ); const B2DPoint quarterUp( 0.75, 0.75 ); aHalfCircle = B2DCubicBezier(a00, a01, a11, a10); // The spline control points become // // (R * cos(A), R * sin(A)) // (R * cos(A) - h * sin(A), R * sin(A) + h * cos (A)) // (R * cos(B) + h * sin(B), R * sin(B) - h * cos (B)) // (R * cos(B), R * sin(B)) // // where h = 4/3 * R * tan ((B-A)/4) // // with R being the radius, A start angle and B end angle (A < B). // // (This calculation courtesy Carl Worth, himself based on // Michael Goldapp and Dokken/Daehlen) // Choosing R=1, A=0, B=pi/2 const double h( 4.0/3.0 * tan(M_PI/8.0) ); aQuarterCircle = B2DCubicBezier(a10 + B2DPoint(1.0,0.0), B2DPoint(B2DPoint( 1.0, h ) + B2DPoint(1.0,0.0)), B2DPoint(B2DPoint( h, 1.0) + B2DPoint(1.0,0.0)), a01 + B2DPoint(1.0,0.0)); aCusp = B2DCubicBezier(a00 + B2DPoint(2.0,0.0), B2DPoint(a11 + B2DPoint(2.0,0.0)), B2DPoint(a01 + B2DPoint(2.0,0.0)), a10 + B2DPoint(2.0,0.0)); aLoop = B2DCubicBezier(a00 + B2DPoint(3.0,0.0), B2DPoint(a01 + B2DPoint(3.0,0.0)), B2DPoint(a10 + B2DPoint(3.0,0.0)), a00 + B2DPoint(3.0,0.0)); aStraightLineDistinctEndPoints = B2DCubicBezier(a00 + B2DPoint(4.0,0.0), B2DPoint(middle + B2DPoint(4.0,0.0)), B2DPoint(middle + B2DPoint(4.0,0.0)), a11 + B2DPoint(4.0,0.0)); aStraightLineDistinctEndPoints2 = B2DCubicBezier(a00 + B2DPoint(5.0,0.0), B2DPoint(quarterDown + B2DPoint(5.0,0.0)), B2DPoint(quarterUp + B2DPoint(5.0,0.0)), a11 + B2DPoint(5.0,0.0)); aStraightLineIdenticalEndPoints = B2DCubicBezier(a00 + B2DPoint(6.0,0.0), B2DPoint(a11 + B2DPoint(6.0,0.0)), B2DPoint(a11 + B2DPoint(6.0,0.0)), a00 + B2DPoint(6.0,0.0)); aStraightLineIdenticalEndPoints2 = B2DCubicBezier(a00 + B2DPoint(7.0,0.0), B2DPoint(quarterDown + B2DPoint(7.0,0.0)), B2DPoint(quarterUp + B2DPoint(7.0,0.0)), a00 + B2DPoint(7.0,0.0)); aCrossing = B2DCubicBezier(a00 + B2DPoint(8.0,0.0), B2DPoint(B2DPoint(2.0,2.0) + B2DPoint(8.0,0.0)), B2DPoint(B2DPoint(-1.0,2.0) + B2DPoint(8.0,0.0)), a10 + B2DPoint(8.0,0.0)); ::std::ofstream output("bez_testcases.gnuplot"); DebugPlotter aPlotter( "Original curves", output ); aPlotter.plot( aHalfCircle, "half circle" ); aPlotter.plot( aQuarterCircle, "quarter circle" ); aPlotter.plot( aCusp, "cusp" ); aPlotter.plot( aLoop, "loop" ); aPlotter.plot( aStraightLineDistinctEndPoints, "straight line 0" ); aPlotter.plot( aStraightLineDistinctEndPoints2, "straight line 1" ); aPlotter.plot( aStraightLineIdenticalEndPoints, "straight line 2" ); aPlotter.plot( aStraightLineIdenticalEndPoints2, "straight line 3" ); aPlotter.plot( aCrossing, "crossing" ); // break up a complex bezier (loopy, spiky or self intersecting) // into simple segments (left to right) B2DCubicBezier aSegment = aCrossing; double fExtremePos(0.0); aPlotter.plot( aSegment, "segment" ); while(aSegment.getMinimumExtremumPosition(fExtremePos)) { aSegment.split(fExtremePos, 0, &aSegment); aPlotter.plot( aSegment, "segment" ); } } virtual void TearDown() { } }; // class b2dbeziertools TEST_F(b2dbeziertools, adaptiveByDistance) { ::std::ofstream output("bez_adaptiveByDistance.gnuplot"); DebugPlotter aPlotter( "distance-adaptive subdivision", output ); const double fBound( 0.0001 ); B2DPolygon result; aHalfCircle.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "half circle"); result.clear(); aQuarterCircle.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "quarter circle"); result.clear(); aLoop.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "loop"); result.clear(); aStraightLineDistinctEndPoints.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "straight line 0"); result.clear(); aStraightLineDistinctEndPoints2.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "straight line 1"); result.clear(); aStraightLineIdenticalEndPoints.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "straight line 2"); result.clear(); aStraightLineIdenticalEndPoints2.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "straight line 3"); result.clear(); aCrossing.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "straight line 4"); result.clear(); aCusp.adaptiveSubdivideByDistance(result, fBound); aPlotter.plot(result, "straight line 5"); result.clear(); ASSERT_TRUE( true ) << "adaptiveByDistance"; } TEST_F(b2dbeziertools, adaptiveByAngle) { const double fBound( 5.0 ); B2DPolygon result; ::std::ofstream output("bez_adaptiveByAngle.gnuplot"); DebugPlotter aPlotter( "angle-adaptive subdivision", output ); aHalfCircle.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "half circle"); result.clear(); aQuarterCircle.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "quarter cirle"); result.clear(); aLoop.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "loop"); result.clear(); aStraightLineDistinctEndPoints.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "straight line 0"); result.clear(); aStraightLineDistinctEndPoints2.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "straight line 1"); result.clear(); aStraightLineIdenticalEndPoints.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "straight line 2"); result.clear(); aStraightLineIdenticalEndPoints2.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "straight line 3"); result.clear(); aCrossing.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "straight line 4"); result.clear(); aCusp.adaptiveSubdivideByAngle(result, fBound, true); aPlotter.plot(result, "straight line 5"); result.clear(); ASSERT_TRUE( true ) << "adaptiveByAngle"; } class b2dcubicbezier : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dcubicbezier class b2dhommatrix : public ::testing::Test { protected: B2DHomMatrix maIdentity; B2DHomMatrix maScale; B2DHomMatrix maTranslate; B2DHomMatrix maShear; B2DHomMatrix maAffine; B2DHomMatrix maPerspective; public: // initialise your test code values here. virtual void SetUp() { // setup some test matrices maIdentity.identity(); // force compact layout maIdentity.set(0,0, 1.0); maIdentity.set(0,1, 0.0); maIdentity.set(0,2, 0.0); maIdentity.set(1,0, 0.0); maIdentity.set(1,1, 1.0); maIdentity.set(1,2, 0.0); maScale.identity(); // force compact layout maScale.set(0,0, 2.0); maScale.set(1,1, 20.0); maTranslate.identity(); // force compact layout maTranslate.set(0,2, 20.0); maTranslate.set(1,2, 2.0); maShear.identity(); // force compact layout maShear.set(0,1, 3.0); maShear.set(1,0, 7.0); maShear.set(1,1, 22.0); maAffine.identity(); // force compact layout maAffine.set(0,0, 1.0); maAffine.set(0,1, 2.0); maAffine.set(0,2, 3.0); maAffine.set(1,0, 4.0); maAffine.set(1,1, 5.0); maAffine.set(1,2, 6.0); maPerspective.set(0,0, 1.0); maPerspective.set(0,1, 2.0); maPerspective.set(0,2, 3.0); maPerspective.set(1,0, 4.0); maPerspective.set(1,1, 5.0); maPerspective.set(1,2, 6.0); maPerspective.set(2,0, 7.0); maPerspective.set(2,1, 8.0); maPerspective.set(2,2, 9.0); } virtual void TearDown() { } void impFillMatrix(B2DHomMatrix& rSource, double fScaleX, double fScaleY, double fShearX, double fRotate) { // fill rSource with a linear combination of scale, shear and rotate rSource.identity(); rSource.scale(fScaleX, fScaleY); rSource.shearX(fShearX); rSource.rotate(fRotate); } bool impDecomposeComposeTest(double fScaleX, double fScaleY, double fShearX, double fRotate) { // linear combine matrix with given values B2DHomMatrix aSource; impFillMatrix(aSource, fScaleX, fScaleY, fShearX, fRotate); // decompose that matrix B2DTuple aDScale; B2DTuple aDTrans; double fDRot; double fDShX; bool bWorked = aSource.decompose(aDScale, aDTrans, fDRot, fDShX); // linear combine another matrix with decomposition results B2DHomMatrix aRecombined; impFillMatrix(aRecombined, aDScale.getX(), aDScale.getY(), fDShX, fDRot); // if decomposition worked, matrices need to be the same return bWorked && aSource == aRecombined; } }; // class b2dhommatrix TEST_F(b2dhommatrix, equal) { B2DHomMatrix aIdentity; B2DHomMatrix aScale; B2DHomMatrix aTranslate; B2DHomMatrix aShear; B2DHomMatrix aAffine; B2DHomMatrix aPerspective; // setup some test matrices aIdentity.identity(); // force compact layout aIdentity.set(0,0, 1.0); aIdentity.set(0,1, 0.0); aIdentity.set(0,2, 0.0); aIdentity.set(1,0, 0.0); aIdentity.set(1,1, 1.0); aIdentity.set(1,2, 0.0); aScale.identity(); // force compact layout aScale.set(0,0, 2.0); aScale.set(1,1, 20.0); aTranslate.identity(); // force compact layout aTranslate.set(0,2, 20.0); aTranslate.set(1,2, 2.0); aShear.identity(); // force compact layout aShear.set(0,1, 3.0); aShear.set(1,0, 7.0); aShear.set(1,1, 22.0); aAffine.identity(); // force compact layout aAffine.set(0,0, 1.0); aAffine.set(0,1, 2.0); aAffine.set(0,2, 3.0); aAffine.set(1,0, 4.0); aAffine.set(1,1, 5.0); aAffine.set(1,2, 6.0); aPerspective.set(0,0, 1.0); aPerspective.set(0,1, 2.0); aPerspective.set(0,2, 3.0); aPerspective.set(1,0, 4.0); aPerspective.set(1,1, 5.0); aPerspective.set(1,2, 6.0); aPerspective.set(2,0, 7.0); aPerspective.set(2,1, 8.0); aPerspective.set(2,2, 9.0); ASSERT_TRUE(aIdentity == maIdentity) << "operator==: identity matrix"; ASSERT_TRUE(aScale == maScale) << "operator==: scale matrix"; ASSERT_TRUE(aTranslate == maTranslate) << "operator==: translate matrix"; ASSERT_TRUE(aShear == maShear) << "operator==: shear matrix"; ASSERT_TRUE(aAffine == maAffine) << "operator==: affine matrix"; ASSERT_TRUE(aPerspective == maPerspective) << "operator==: perspective matrix"; } TEST_F(b2dhommatrix, identity) { B2DHomMatrix ident; ASSERT_TRUE(maIdentity == ident) << "identity"; } TEST_F(b2dhommatrix, scale) { B2DHomMatrix mat; mat.scale(2.0,20.0); ASSERT_TRUE(maScale == mat) << "scale"; } TEST_F(b2dhommatrix, translate) { B2DHomMatrix mat; mat.translate(20.0,2.0); ASSERT_TRUE(maTranslate == mat) << "translate"; } TEST_F(b2dhommatrix, shear) { B2DHomMatrix mat; mat.shearX(3.0); mat.shearY(7.0); ASSERT_TRUE(maShear == mat) << "translate"; } TEST_F(b2dhommatrix, multiply) { B2DHomMatrix affineAffineProd; affineAffineProd.set(0,0, 9); affineAffineProd.set(0,1, 12); affineAffineProd.set(0,2, 18); affineAffineProd.set(1,0, 24); affineAffineProd.set(1,1, 33); affineAffineProd.set(1,2, 48); B2DHomMatrix affinePerspectiveProd; affinePerspectiveProd.set(0,0, 30); affinePerspectiveProd.set(0,1, 36); affinePerspectiveProd.set(0,2, 42); affinePerspectiveProd.set(1,0, 66); affinePerspectiveProd.set(1,1, 81); affinePerspectiveProd.set(1,2, 96); affinePerspectiveProd.set(2,0, 7); affinePerspectiveProd.set(2,1, 8); affinePerspectiveProd.set(2,2, 9); B2DHomMatrix perspectiveAffineProd; perspectiveAffineProd.set(0,0, 9); perspectiveAffineProd.set(0,1, 12); perspectiveAffineProd.set(0,2, 18); perspectiveAffineProd.set(1,0, 24); perspectiveAffineProd.set(1,1, 33); perspectiveAffineProd.set(1,2, 48); perspectiveAffineProd.set(2,0, 39); perspectiveAffineProd.set(2,1, 54); perspectiveAffineProd.set(2,2, 78); B2DHomMatrix perspectivePerspectiveProd; perspectivePerspectiveProd.set(0,0, 30); perspectivePerspectiveProd.set(0,1, 36); perspectivePerspectiveProd.set(0,2, 42); perspectivePerspectiveProd.set(1,0, 66); perspectivePerspectiveProd.set(1,1, 81); perspectivePerspectiveProd.set(1,2, 96); perspectivePerspectiveProd.set(2,0, 102); perspectivePerspectiveProd.set(2,1, 126); perspectivePerspectiveProd.set(2,2, 150); B2DHomMatrix temp; temp = maAffine; temp*=maAffine; ASSERT_TRUE(temp == affineAffineProd) << "multiply: both compact"; temp = maPerspective; temp*=maAffine; ASSERT_TRUE(temp == affinePerspectiveProd) << "multiply: first compact"; temp = maAffine; temp*=maPerspective; ASSERT_TRUE(temp == perspectiveAffineProd) << "multiply: second compact"; temp = maPerspective; temp*=maPerspective; ASSERT_TRUE(temp == perspectivePerspectiveProd) << "multiply: none compact"; } TEST_F(b2dhommatrix, decompose) { // test matrix decompositions. Each matrix decomposed and rebuilt // using the decompose result should be the same as before. Test // with all ranges of values. Translations are not tested since these // are just the two rightmost values and uncritical static double fSX(10.0); static double fSY(12.0); static double fR(45.0 * F_PI180); static double fS(15.0 * F_PI180); // check all possible scaling combinations ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, 0.0, 0.0)) << "decompose: error test A1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, 0.0, 0.0)) << "decompose: error test A2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, 0.0, 0.0)) << "decompose: error test A3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, 0.0, 0.0)) << "decompose: error test A4"; // check all possible scaling combinations with positive rotation ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, 0.0, fR)) << "decompose: error test B1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, 0.0, fR)) << "decompose: error test B2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, 0.0, fR)) << "decompose: error test B3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, 0.0, fR)) << "decompose: error test B4"; // check all possible scaling combinations with negative rotation ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, 0.0, -fR)) << "decompose: error test C1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, 0.0, -fR)) << "decompose: error test C2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, 0.0, -fR)) << "decompose: error test C3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, 0.0, -fR)) << "decompose: error test C4"; // check all possible scaling combinations with positive shear ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, tan(fS), 0.0)) << "decompose: error test D1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, tan(fS), 0.0)) << "decompose: error test D2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, tan(fS), 0.0)) << "decompose: error test D3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, tan(fS), 0.0)) << "decompose: error test D4"; // check all possible scaling combinations with negative shear ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, tan(-fS), 0.0)) << "decompose: error test E1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, tan(-fS), 0.0)) << "decompose: error test E2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, tan(-fS), 0.0)) << "decompose: error test E3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, tan(-fS), 0.0)) << "decompose: error test E4"; // check all possible scaling combinations with positive rotate and positive shear ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, tan(fS), fR)) << "decompose: error test F1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, tan(fS), fR)) << "decompose: error test F2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, tan(fS), fR)) << "decompose: error test F3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, tan(fS), fR)) << "decompose: error test F4"; // check all possible scaling combinations with negative rotate and positive shear ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, tan(fS), -fR)) << "decompose: error test G1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, tan(fS), -fR)) << "decompose: error test G2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, tan(fS), -fR)) << "decompose: error test G3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, tan(fS), -fR)) << "decompose: error test G4"; // check all possible scaling combinations with positive rotate and negative shear ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, tan(-fS), fR)) << "decompose: error test H1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, tan(-fS), fR)) << "decompose: error test H2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, tan(-fS), fR)) << "decompose: error test H3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, tan(-fS), fR)) << "decompose: error test H4"; // check all possible scaling combinations with negative rotate and negative shear ASSERT_TRUE(impDecomposeComposeTest(fSX, fSY, tan(-fS), -fR)) << "decompose: error test I1"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, fSY, tan(-fS), -fR)) << "decompose: error test I2"; ASSERT_TRUE(impDecomposeComposeTest(fSX, -fSY, tan(-fS), -fR)) << "decompose: error test I3"; ASSERT_TRUE(impDecomposeComposeTest(-fSX, -fSY, tan(-fS), -fR)) << "decompose: error test I4"; } class b2dhompoint : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dhompoint class b2dpoint : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dpoint class b2dpolygon : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dpolygon TEST_F(b2dpolygon, testBasics) { B2DPolygon aPoly; aPoly.appendBezierSegment(B2DPoint(1,1),B2DPoint(2,2),B2DPoint(3,3)); ASSERT_TRUE(aPoly.getB2DPoint(0) == B2DPoint(3,3)) << "#1 first polygon point wrong"; ASSERT_TRUE(aPoly.getPrevControlPoint(0) == B2DPoint(2,2)) << "#1 first control point wrong"; ASSERT_TRUE(aPoly.getNextControlPoint(0) == B2DPoint(3,3)) << "#1 second control point wrong"; ASSERT_TRUE(aPoly.isNextControlPointUsed(0) == false) << "next control point not used"; aPoly.setNextControlPoint(0,B2DPoint(4,4)); ASSERT_TRUE(aPoly.getNextControlPoint(0) == B2DPoint(4,4)) << "#1.1 second control point wrong"; ASSERT_TRUE(aPoly.isNextControlPointUsed(0) == true) << "next control point used"; ASSERT_TRUE(aPoly.areControlPointsUsed() == true) << "areControlPointsUsed() wrong"; ASSERT_TRUE(aPoly.getContinuityInPoint(0) == CONTINUITY_C2) << "getContinuityInPoint() wrong"; aPoly.resetControlPoints(); ASSERT_TRUE(aPoly.getB2DPoint(0) == B2DPoint(3,3)) << "resetControlPoints() did not clear"; ASSERT_TRUE(aPoly.getPrevControlPoint(0) == B2DPoint(3,3)) << "resetControlPoints() did not clear"; ASSERT_TRUE(aPoly.getNextControlPoint(0) == B2DPoint(3,3)) << "resetControlPoints() did not clear"; ASSERT_TRUE(aPoly.areControlPointsUsed() == false) << "areControlPointsUsed() wrong #2"; aPoly.clear(); aPoly.append(B2DPoint(0,0)); aPoly.appendBezierSegment(B2DPoint(1,1),B2DPoint(2,2),B2DPoint(3,3)); ASSERT_TRUE(aPoly.getB2DPoint(0) == B2DPoint(0,0)) << "#2 first polygon point wrong"; ASSERT_TRUE(aPoly.getPrevControlPoint(0) == B2DPoint(0,0)) << "#2 first control point wrong"; ASSERT_TRUE(aPoly.getNextControlPoint(0) == B2DPoint(1,1)) << "#2 second control point wrong"; ASSERT_TRUE(aPoly.getPrevControlPoint(1) == B2DPoint(2,2)) << "#2 third control point wrong"; ASSERT_TRUE(aPoly.getNextControlPoint(1) == B2DPoint(3,3)) << "#2 fourth control point wrong"; ASSERT_TRUE(aPoly.getB2DPoint(1) == B2DPoint(3,3)) << "#2 second polygon point wrong"; } class b2dpolygontools : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dpolygontools TEST_F(b2dpolygontools, testIsRectangle) { B2DPolygon aRect1( tools::createPolygonFromRect( B2DRange(0,0,1,1) ) ); B2DPolygon aRect2; aRect2.append( B2DPoint(0,0) ); aRect2.append( B2DPoint(1,0) ); aRect2.append( B2DPoint(1,.5)); aRect2.append( B2DPoint(1,1) ); aRect2.append( B2DPoint(0,1) ); aRect2.setClosed(true); B2DPolygon aNonRect1; aNonRect1.append( B2DPoint(0,0) ); aNonRect1.append( B2DPoint(1,0) ); aNonRect1.append( B2DPoint(1,1) ); aNonRect1.append( B2DPoint(0.5,1) ); aNonRect1.append( B2DPoint(0.5,0) ); aNonRect1.setClosed(true); B2DPolygon aNonRect2; aNonRect2.append( B2DPoint(0,0) ); aNonRect2.append( B2DPoint(1,1) ); aNonRect2.append( B2DPoint(1,0) ); aNonRect2.append( B2DPoint(0,1) ); aNonRect2.setClosed(true); B2DPolygon aNonRect3; aNonRect3.append( B2DPoint(0,0) ); aNonRect3.append( B2DPoint(1,0) ); aNonRect3.append( B2DPoint(1,1) ); aNonRect3.setClosed(true); B2DPolygon aNonRect4; aNonRect4.append( B2DPoint(0,0) ); aNonRect4.append( B2DPoint(1,0) ); aNonRect4.append( B2DPoint(1,1) ); aNonRect4.append( B2DPoint(0,1) ); B2DPolygon aNonRect5; aNonRect5.append( B2DPoint(0,0) ); aNonRect5.append( B2DPoint(1,0) ); aNonRect5.append( B2DPoint(1,1) ); aNonRect5.append( B2DPoint(0,1) ); aNonRect5.setControlPoints(1,B2DPoint(1,0),B2DPoint(-11,0)); aNonRect5.setClosed(true); ASSERT_TRUE(tools::isRectangle( aRect1 )) << "checking rectangle-ness of rectangle 1"; ASSERT_TRUE(tools::isRectangle( aRect2 )) << "checking rectangle-ness of rectangle 2"; ASSERT_TRUE(!tools::isRectangle( aNonRect1 )) << "checking non-rectangle-ness of polygon 1"; ASSERT_TRUE(!tools::isRectangle( aNonRect2 )) << "checking non-rectangle-ness of polygon 2"; ASSERT_TRUE(!tools::isRectangle( aNonRect3 )) << "checking non-rectangle-ness of polygon 3"; ASSERT_TRUE(!tools::isRectangle( aNonRect4 )) << "checking non-rectangle-ness of polygon 4"; ASSERT_TRUE(!tools::isRectangle( aNonRect5 )) << "checking non-rectangle-ness of polygon 5"; } class b2dpolypolygon : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dpolypolygon class b2dquadraticbezier : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dquadraticbezier class b2drange : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2drange class b2dtuple : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dtuple class b2dvector : public ::testing::Test { public: // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class b2dvector class bcolor : public ::testing::Test { protected: BColor maWhite; BColor maBlack; BColor maRed; BColor maGreen; BColor maBlue; BColor maYellow; BColor maMagenta; BColor maCyan; public: bcolor() : maWhite(1,1,1), maBlack(0,0,0), maRed(1,0,0), maGreen(0,1,0), maBlue(0,0,1), maYellow(1,1,0), maMagenta(1,0,1), maCyan(0,1,1) {} // initialise your test code values here. virtual void SetUp() { } virtual void TearDown() { } }; // class bcolor TEST_F(bcolor, hslTest) { ASSERT_TRUE(tools::rgb2hsl(maWhite) == BColor(0,0,1)) << "white"; ASSERT_TRUE(tools::rgb2hsl(maBlack) == BColor(0,0,0)) << "black"; ASSERT_TRUE(tools::rgb2hsl(maRed) == BColor(0,1,0.5)) << "red"; ASSERT_TRUE(tools::rgb2hsl(maGreen) == BColor(120,1,0.5)) << "green"; ASSERT_TRUE(tools::rgb2hsl(maBlue) == BColor(240,1,0.5)) << "blue"; ASSERT_TRUE(tools::rgb2hsl(maYellow) == BColor(60,1,0.5)) << "yellow"; ASSERT_TRUE(tools::rgb2hsl(maMagenta) == BColor(300,1,0.5)) << "magenta"; ASSERT_TRUE(tools::rgb2hsl(maCyan) == BColor(180,1,0.5)) << "cyan"; ASSERT_TRUE(tools::rgb2hsl(BColor(0,0.5,1)) == BColor(210,1,0.5)) << "third hue case"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maWhite)) == maWhite) << "roundtrip white"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maBlack)) == maBlack) << "roundtrip black"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maRed)) == maRed) << "roundtrip red"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maGreen)) == maGreen) << "roundtrip green"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maBlue)) == maBlue) << "roundtrip blue"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maYellow)) == maYellow) << "roundtrip yellow"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maMagenta)) == maMagenta) << "roundtrip magenta"; ASSERT_TRUE(tools::hsl2rgb(tools::rgb2hsl(maCyan)) == maCyan) << "roundtrip cyan"; ASSERT_TRUE(tools::rgb2hsl(maWhite*.1) == BColor(0,0,.1)) << "grey10"; ASSERT_TRUE(tools::rgb2hsl(maWhite*.9) == BColor(0,0,.9)) << "grey90"; ASSERT_TRUE(tools::rgb2hsl(maRed*.5) == BColor(0,1,0.25)) << "red/2"; ASSERT_TRUE(tools::rgb2hsl(maGreen*.5) == BColor(120,1,0.25)) << "green/2"; ASSERT_TRUE(tools::rgb2hsl(maBlue*.5) == BColor(240,1,0.25)) << "blue/2"; ASSERT_TRUE(tools::rgb2hsl(maYellow*.5) == BColor(60,1,0.25)) << "yellow/2"; ASSERT_TRUE(tools::rgb2hsl(maMagenta*.5) == BColor(300,1,0.25)) << "magenta/2"; ASSERT_TRUE(tools::rgb2hsl(maCyan*.5) == BColor(180,1,0.25)) << "cyan/2"; ASSERT_TRUE(tools::rgb2hsl(BColor(.75,.25,.25)) == BColor(0,.5,.5)) << "pastel"; } TEST_F(bcolor, hsvTest) { ASSERT_TRUE(tools::rgb2hsv(maWhite) == BColor(0,0,1)) << "white"; ASSERT_TRUE(tools::rgb2hsv(maBlack) == BColor(0,0,0)) << "black"; ASSERT_TRUE(tools::rgb2hsv(maRed) == BColor(0,1,1)) << "red"; ASSERT_TRUE(tools::rgb2hsv(maGreen) == BColor(120,1,1)) << "green"; ASSERT_TRUE(tools::rgb2hsv(maBlue) == BColor(240,1,1)) << "blue"; ASSERT_TRUE(tools::rgb2hsv(maYellow) == BColor(60,1,1)) << "yellow"; ASSERT_TRUE(tools::rgb2hsv(maMagenta) == BColor(300,1,1)) << "magenta"; ASSERT_TRUE(tools::rgb2hsv(maCyan) == BColor(180,1,1)) << "cyan"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maWhite)) == maWhite) << "roundtrip white"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maBlack)) == maBlack) << "roundtrip black"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maRed)) == maRed) << "roundtrip red"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maGreen)) == maGreen) << "roundtrip green"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maBlue)) == maBlue) << "roundtrip blue"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maYellow)) == maYellow) << "roundtrip yellow"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maMagenta)) == maMagenta) << "roundtrip magenta"; ASSERT_TRUE(tools::hsv2rgb(tools::rgb2hsv(maCyan)) == maCyan) << "roundtrip cyan"; ASSERT_TRUE(tools::rgb2hsv(maWhite*.1) == BColor(0,0,.1)) << "grey10"; ASSERT_TRUE(tools::rgb2hsv(maWhite*.9) == BColor(0,0,.9)) << "grey90"; ASSERT_TRUE(tools::rgb2hsv(maRed*.5) == BColor(0,1,0.5)) << "red/2"; ASSERT_TRUE(tools::rgb2hsv(maGreen*.5) == BColor(120,1,0.5)) << "green/2"; ASSERT_TRUE(tools::rgb2hsv(maBlue*.5) == BColor(240,1,0.5)) << "blue/2"; ASSERT_TRUE(tools::rgb2hsv(maYellow*.5) == BColor(60,1,0.5)) << "yellow/2"; ASSERT_TRUE(tools::rgb2hsv(maMagenta*.5) == BColor(300,1,0.5)) << "magenta/2"; ASSERT_TRUE(tools::rgb2hsv(maCyan*.5) == BColor(180,1,0.5)) << "cyan/2"; ASSERT_TRUE(tools::rgb2hsv(BColor(.5,.25,.25)) == BColor(0,.5,.5)) << "pastel"; } TEST_F(bcolor, ciexyzTest) { tools::rgb2ciexyz(maWhite); tools::rgb2ciexyz(maBlack); tools::rgb2ciexyz(maRed); tools::rgb2ciexyz(maGreen); tools::rgb2ciexyz(maBlue); tools::rgb2ciexyz(maYellow); tools::rgb2ciexyz(maMagenta); tools::rgb2ciexyz(maCyan); } // ----------------------------------------------------------------------------- } // namespace basegfx2d