/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_canvas.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "impltools.hxx" #include "canvasbitmap.hxx" #include using namespace ::com::sun::star; namespace vclcanvas { namespace tools { ::BitmapEx bitmapExFromXBitmap( const uno::Reference< rendering::XBitmap >& xBitmap ) { // TODO(F3): CanvasCustomSprite should also be tunnelled // through (also implements XIntegerBitmap interface) CanvasBitmap* pBitmapImpl = dynamic_cast< CanvasBitmap* >( xBitmap.get() ); if( pBitmapImpl ) { return pBitmapImpl->getBitmap(); } else { SpriteCanvas* pCanvasImpl = dynamic_cast< SpriteCanvas* >( xBitmap.get() ); if( pCanvasImpl && pCanvasImpl->getBackBuffer() ) { // TODO(F3): mind the plain Canvas impl. Consolidate with CWS canvas05 const ::OutputDevice& rDev( pCanvasImpl->getBackBuffer()->getOutDev() ); const ::Point aEmptyPoint; return rDev.GetBitmapEx( aEmptyPoint, rDev.GetOutputSizePixel() ); } // TODO(F2): add support for floating point bitmap formats uno::Reference< rendering::XIntegerReadOnlyBitmap > xIntBmp( xBitmap, uno::UNO_QUERY_THROW ); ::BitmapEx aBmpEx = ::vcl::unotools::bitmapExFromXBitmap( xIntBmp ); if( !!aBmpEx ) return aBmpEx; // TODO(F1): extract pixel from XBitmap interface ENSURE_OR_THROW( false, "bitmapExFromXBitmap(): could not extract bitmap" ); } return ::BitmapEx(); } bool setupFontTransform( ::Point& o_rPoint, ::Font& io_rVCLFont, const rendering::ViewState& rViewState, const rendering::RenderState& rRenderState, ::OutputDevice& rOutDev ) { ::basegfx::B2DHomMatrix aMatrix; ::canvas::tools::mergeViewAndRenderTransform(aMatrix, rViewState, rRenderState); ::basegfx::B2DTuple aScale; ::basegfx::B2DTuple aTranslate; double nRotate, nShearX; aMatrix.decompose( aScale, aTranslate, nRotate, nShearX ); // #i72417# detecting the 180 degree rotation case manually here. if( aScale.getX() < 0.0 && aScale.getY() < 0.0 && basegfx::fTools::equalZero(nRotate) ) { aScale *= -1.0; nRotate += M_PI; } // query font metric _before_ tampering with width and height if( !::rtl::math::approxEqual(aScale.getX(), aScale.getY()) ) { // retrieve true font width const sal_Int32 nFontWidth( rOutDev.GetFontMetric( io_rVCLFont ).GetWidth() ); const sal_Int32 nScaledFontWidth( ::basegfx::fround(nFontWidth * aScale.getX()) ); if( !nScaledFontWidth ) { // scale is smaller than one pixel - disable text // output altogether return false; } io_rVCLFont.SetWidth( nScaledFontWidth ); } if( !::rtl::math::approxEqual(aScale.getY(), 1.0) ) { const sal_Int32 nFontHeight( io_rVCLFont.GetHeight() ); io_rVCLFont.SetHeight( ::basegfx::fround(nFontHeight * aScale.getY()) ); } io_rVCLFont.SetOrientation( static_cast< short >( ::basegfx::fround(-fmod(nRotate, 2*M_PI)*(1800.0/M_PI)) ) ); // TODO(F2): Missing functionality in VCL: shearing o_rPoint.X() = ::basegfx::fround(aTranslate.getX()); o_rPoint.Y() = ::basegfx::fround(aTranslate.getY()); return true; } bool isRectangle( const PolyPolygon& rPolyPoly ) { // exclude some cheap cases first if( rPolyPoly.Count() != 1 ) return false; const ::Polygon& rPoly( rPolyPoly[0] ); sal_uInt16 nCount( rPoly.GetSize() ); if( nCount < 4 ) return false; // delegate to basegfx return ::basegfx::tools::isRectangle( rPoly.getB2DPolygon() ); } // VCL-Canvas related //--------------------------------------------------------------------- ::Point mapRealPoint2D( const geometry::RealPoint2D& rPoint, const rendering::ViewState& rViewState, const rendering::RenderState& rRenderState ) { ::basegfx::B2DPoint aPoint( ::basegfx::unotools::b2DPointFromRealPoint2D(rPoint) ); ::basegfx::B2DHomMatrix aMatrix; aPoint *= ::canvas::tools::mergeViewAndRenderTransform(aMatrix, rViewState, rRenderState); return ::vcl::unotools::pointFromB2DPoint( aPoint ); } ::PolyPolygon mapPolyPolygon( const ::basegfx::B2DPolyPolygon& rPoly, const rendering::ViewState& rViewState, const rendering::RenderState& rRenderState ) { ::basegfx::B2DHomMatrix aMatrix; ::canvas::tools::mergeViewAndRenderTransform(aMatrix, rViewState, rRenderState); ::basegfx::B2DPolyPolygon aTemp( rPoly ); aTemp.transform( aMatrix ); return ::PolyPolygon( aTemp ); } ::BitmapEx transformBitmap( const BitmapEx& rBitmap, const ::basegfx::B2DHomMatrix& rTransform, const uno::Sequence< double >& rDeviceColor, ModulationMode eModulationMode ) { RTL_LOGFILE_CONTEXT( aLog, "::vclcanvas::tools::transformBitmap()" ); RTL_LOGFILE_CONTEXT_TRACE1( aLog, "::vclcanvas::tools::transformBitmap: 0x%X", &rBitmap ); // calc transformation and size of bitmap to be // generated. Note, that the translational components are // deleted from the transformation; this can be handled by // an offset when painting the bitmap const Size aBmpSize( rBitmap.GetSizePixel() ); ::basegfx::B2DRectangle aDestRect; bool bCopyBack( false ); // calc effective transformation for bitmap const ::basegfx::B2DRectangle aSrcRect( 0, 0, aBmpSize.Width(), aBmpSize.Height() ); ::canvas::tools::calcTransformedRectBounds( aDestRect, aSrcRect, rTransform ); // re-center bitmap, such that it's left, top border is // aligned with (0,0). The method takes the given // rectangle, and calculates a transformation that maps // this rectangle unscaled to the origin. ::basegfx::B2DHomMatrix aLocalTransform; ::canvas::tools::calcRectToOriginTransform( aLocalTransform, aSrcRect, rTransform ); const bool bModulateColors( eModulationMode == MODULATE_WITH_DEVICECOLOR && rDeviceColor.getLength() > 2 ); const double nRedModulation( bModulateColors ? rDeviceColor[0] : 1.0 ); const double nGreenModulation( bModulateColors ? rDeviceColor[1] : 1.0 ); const double nBlueModulation( bModulateColors ? rDeviceColor[2] : 1.0 ); const double nAlphaModulation( bModulateColors && rDeviceColor.getLength() > 3 ? rDeviceColor[3] : 1.0 ); Bitmap aSrcBitmap( rBitmap.GetBitmap() ); Bitmap aSrcAlpha; // differentiate mask and alpha channel (on-off // vs. multi-level transparency) if( rBitmap.IsTransparent() ) { if( rBitmap.IsAlpha() ) aSrcAlpha = rBitmap.GetAlpha().GetBitmap(); else aSrcAlpha = rBitmap.GetMask(); } ScopedBitmapReadAccess pReadAccess( aSrcBitmap.AcquireReadAccess(), aSrcBitmap ); ScopedBitmapReadAccess pAlphaReadAccess( rBitmap.IsTransparent() ? aSrcAlpha.AcquireReadAccess() : (BitmapReadAccess*)NULL, aSrcAlpha ); if( pReadAccess.get() == NULL || (pAlphaReadAccess.get() == NULL && rBitmap.IsTransparent()) ) { // TODO(E2): Error handling! ENSURE_OR_THROW( false, "transformBitmap(): could not access source bitmap" ); } // mapping table, to translate pAlphaReadAccess' pixel // values into destination alpha values (needed e.g. for // paletted 1-bit masks). sal_uInt8 aAlphaMap[256]; if( rBitmap.IsTransparent() ) { if( rBitmap.IsAlpha() ) { // source already has alpha channel - 1:1 mapping, // i.e. aAlphaMap[0]=0,...,aAlphaMap[255]=255. ::std::iota( aAlphaMap, &aAlphaMap[256], 0 ); } else { // mask transparency - determine used palette colors const BitmapColor& rCol0( pAlphaReadAccess->GetPaletteColor( 0 ) ); const BitmapColor& rCol1( pAlphaReadAccess->GetPaletteColor( 1 ) ); // shortcut for true luminance calculation // (assumes that palette is grey-level) aAlphaMap[0] = rCol0.GetRed(); aAlphaMap[1] = rCol1.GetRed(); } } // else: mapping table is not used const Size aDestBmpSize( ::basegfx::fround( aDestRect.getWidth() ), ::basegfx::fround( aDestRect.getHeight() ) ); if( aDestBmpSize.Width() == 0 || aDestBmpSize.Height() == 0 ) return BitmapEx(); Bitmap aDstBitmap( aDestBmpSize, aSrcBitmap.GetBitCount(), &pReadAccess->GetPalette() ); Bitmap aDstAlpha( AlphaMask( aDestBmpSize ).GetBitmap() ); { // just to be on the safe side: let the // ScopedAccessors get destructed before // copy-constructing the resulting bitmap. This will // rule out the possibility that cached accessor data // is not yet written back. ScopedBitmapWriteAccess pWriteAccess( aDstBitmap.AcquireWriteAccess(), aDstBitmap ); ScopedBitmapWriteAccess pAlphaWriteAccess( aDstAlpha.AcquireWriteAccess(), aDstAlpha ); if( pWriteAccess.get() != NULL && pAlphaWriteAccess.get() != NULL && rTransform.isInvertible() ) { // we're doing inverse mapping here, i.e. mapping // points from the destination bitmap back to the // source ::basegfx::B2DHomMatrix aTransform( aLocalTransform ); aTransform.invert(); // for the time being, always read as ARGB for( int y=0; y= aBmpSize.Width() || nSrcY < 0 || nSrcY >= aBmpSize.Height() ) { pAlphaWriteAccess->SetPixel( y, x, BitmapColor(255) ); } else { // modulate alpha with // nAlphaModulation. This is a // little bit verbose, formula // is 255 - (255-pixAlpha)*nAlphaModulation // (invert 'alpha' pixel value, // to get the standard alpha // channel behaviour) pAlphaWriteAccess->SetPixel( y, x, BitmapColor( 255U - static_cast( nAlphaModulation* (255U - aAlphaMap[ pAlphaReadAccess->GetPixel( nSrcY, nSrcX ).GetIndex() ] ) + .5 ) ) ); BitmapColor aColor( pReadAccess->GetPixel( nSrcY, nSrcX ) ); aColor.SetRed( static_cast( nRedModulation * aColor.GetRed() + .5 )); aColor.SetGreen( static_cast( nGreenModulation * aColor.GetGreen() + .5 )); aColor.SetBlue( static_cast( nBlueModulation * aColor.GetBlue() + .5 )); pWriteAccess->SetPixel( y, x, aColor ); } } } else { for( int x=0; x= aBmpSize.Width() || nSrcY < 0 || nSrcY >= aBmpSize.Height() ) { pAlphaWriteAccess->SetPixel( y, x, BitmapColor(255) ); } else { // modulate alpha with // nAlphaModulation. This is a // little bit verbose, formula // is 255 - 255*nAlphaModulation // (invert 'alpha' pixel value, // to get the standard alpha // channel behaviour) pAlphaWriteAccess->SetPixel( y, x, BitmapColor( 255U - static_cast( nAlphaModulation*255.0 + .5 ) ) ); BitmapColor aColor( pReadAccess->GetPixel( nSrcY, nSrcX ) ); aColor.SetRed( static_cast( nRedModulation * aColor.GetRed() + .5 )); aColor.SetGreen( static_cast( nGreenModulation * aColor.GetGreen() + .5 )); aColor.SetBlue( static_cast( nBlueModulation * aColor.GetBlue() + .5 )); pWriteAccess->SetPixel( y, x, aColor ); } } } } else { // differentiate mask and alpha channel (on-off // vs. multi-level transparency) if( rBitmap.IsTransparent() ) { // Handling alpha and mask just the same... for( int x=0; x= aBmpSize.Width() || nSrcY < 0 || nSrcY >= aBmpSize.Height() ) { pAlphaWriteAccess->SetPixel( y, x, BitmapColor(255) ); } else { pAlphaWriteAccess->SetPixel( y, x, aAlphaMap[ pAlphaReadAccess->GetPixel( nSrcY, nSrcX ) ] ); pWriteAccess->SetPixel( y, x, pReadAccess->GetPixel( nSrcY, nSrcX ) ); } } } else { for( int x=0; x= aBmpSize.Width() || nSrcY < 0 || nSrcY >= aBmpSize.Height() ) { pAlphaWriteAccess->SetPixel( y, x, BitmapColor(255) ); } else { pAlphaWriteAccess->SetPixel( y, x, BitmapColor(0) ); pWriteAccess->SetPixel( y, x, pReadAccess->GetPixel( nSrcY, nSrcX ) ); } } } } } bCopyBack = true; } else { // TODO(E2): Error handling! ENSURE_OR_THROW( false, "transformBitmap(): could not access bitmap" ); } } if( bCopyBack ) return BitmapEx( aDstBitmap, AlphaMask( aDstAlpha ) ); else return BitmapEx(); } } }