/************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_i18npool.hxx" #include #include #include "calendar_hijri.hxx" using namespace ::com::sun::star::uno; using namespace ::com::sun::star::lang; using namespace ::com::sun::star::i18n; using namespace ::rtl; #define ERROR RuntimeException() #define GREGORIAN_CROSSOVER 2299161 // not used //static UErrorCode status; // status is shared in all calls to Calendar, it has to be reset for each call. // radians per degree (pi/180) const double Calendar_hijri::RadPerDeg = 0.01745329251994329577; // Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec const double Calendar_hijri::SynPeriod = 29.53058868; const double Calendar_hijri::SynMonth = 365.25/29.53058868; // Solar days in a year/SynPeriod // Julian day on Jan 1, 1900 const double Calendar_hijri::jd1900 = 2415020.75933; // Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900 const sal_Int32 Calendar_hijri::SynRef = 1252; const sal_Int32 Calendar_hijri::GregRef = 1422; // Local time specific to Saudi Arabia const double Calendar_hijri::SA_TimeZone = 3.0; const double Calendar_hijri::EveningPeriod = 6.0; const sal_Int32 Calendar_hijri::LeapYear[] = { 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29 }; Calendar_hijri::Calendar_hijri() { cCalendar = "com.sun.star.i18n.Calendar_hijri"; } #define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH)) // map field value from hijri calendar to gregorian calendar void Calendar_hijri::mapToGregorian() throw(RuntimeException) { if (fieldSet & FIELDS) { sal_Int32 day = (sal_Int32)fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH]; sal_Int32 month = (sal_Int32)fieldSetValue[CalendarFieldIndex::MONTH] + 1; sal_Int32 year = (sal_Int32)fieldSetValue[CalendarFieldIndex::YEAR]; if (fieldSetValue[CalendarFieldIndex::ERA] == 0) year *= -1; ToGregorian(&day, &month, &year); fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1; fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast(month - 1); fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16) day; fieldSetValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year); fieldSet |= FIELDS; } } // map field value from gregorian calendar to hijri calendar void Calendar_hijri::mapFromGregorian() throw(RuntimeException) { sal_Int32 month, day, year; day = (sal_Int32)fieldValue[CalendarFieldIndex::DAY_OF_MONTH]; month = (sal_Int32)fieldValue[CalendarFieldIndex::MONTH] + 1; year = (sal_Int32)fieldValue[CalendarFieldIndex::YEAR]; if (fieldValue[CalendarFieldIndex::ERA] == 0) year *= -1; // Get Hijri date getHijri(&day, &month, &year); fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16)day; fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast(month - 1); fieldValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year); fieldValue[CalendarFieldIndex::ERA] = (sal_Int16) year < 1 ? 0 : 1; } // // This function returns the Julian date/time of the Nth new moon since // January 1900. The synodic month is passed as parameter. // // Adapted from "Astronomical Formulae for Calculators" by // Jean Meeus, Third Edition, Willmann-Bell, 1985. // double Calendar_hijri::NewMoon(sal_Int32 n) { double jd, t, t2, t3, k, ma, sa, tf, xtra; k = n; t = k/1236.85; // Time in Julian centuries from 1900 January 0.5 t2 = t * t; t3 = t2 * t; // Mean time of phase jd = jd1900 + SynPeriod * k - 0.0001178 * t2 - 0.000000155 * t3 + 0.00033 * sin(RadPerDeg * (166.56 + 132.87 * t - 0.009173 * t2)); // Sun's mean anomaly in radian sa = RadPerDeg * (359.2242 + 29.10535608 * k - 0.0000333 * t2 - 0.00000347 * t3); // Moon's mean anomaly ma = RadPerDeg * (306.0253 + 385.81691806 * k + 0.0107306 * t2 + 0.00001236 * t3); // Moon's argument of latitude tf = RadPerDeg * 2.0 * (21.2964 + 390.67050646 * k - 0.0016528 * t2 - 0.00000239 * t3); // should reduce to interval between 0 to 1.0 before calculating further // Corrections for New Moon xtra = (0.1734 - 0.000393 * t) * sin(sa) + 0.0021 * sin(sa * 2) - 0.4068 * sin(ma) + 0.0161 * sin(2 * ma) - 0.0004 * sin(3 * ma) + 0.0104 * sin(tf) - 0.0051 * sin(sa + ma) - 0.0074 * sin(sa - ma) + 0.0004 * sin(tf + sa) - 0.0004 * sin(tf - sa) - 0.0006 * sin(tf + ma) + 0.0010 * sin(tf - ma) + 0.0005 * sin(sa + 2 * ma); // convert from Ephemeris Time (ET) to (approximate) Universal Time (UT) jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440; return (jd); } // Get Hijri Date void Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year) { double prevday; // double dayfraction; sal_Int32 syndiff; sal_Int32 newsyn; double newjd; double julday; sal_Int32 synmonth; // Get Julian Day from Gregorian julday = getJulianDay(*day, *month, *year); // obtain approx. of how many Synodic months since the beginning of the year 1900 synmonth = (sal_Int32)(0.5 + (julday - jd1900)/SynPeriod); newsyn = synmonth; prevday = (sal_Int32)julday - 0.5; do { newjd = NewMoon(newsyn); // Decrement syndonic months newsyn--; } while (newjd > prevday); newsyn++; // difference from reference point syndiff = newsyn - SynRef; // Round up the day *day = (sal_Int32)(((sal_Int32)julday) - newjd + 0.5); *month = (syndiff % 12) + 1; // currently not supported //dayOfYear = (sal_Int32)(month * SynPeriod + day); *year = GregRef + (sal_Int32)(syndiff / 12); // If month negative, consider it previous year if (syndiff != 0 && *month <= 0) { *month += 12; (*year)--; } // If Before Hijri subtract 1 if (*year <= 0) (*year)--; } void Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year) { sal_Int32 nmonth; // double dayfraction; double jday; // sal_Int32 dayint; if ( *year < 0 ) (*year)++; // Number of month from reference point nmonth = *month + *year * 12 - (GregRef * 12 + 1); // Add Synodic Reference point nmonth += SynRef; // Get Julian days add time too jday = NewMoon(nmonth) + *day; // Round-up jday = (double)((sal_Int32)(jday + 0.5)); // Use algorithm from "Numerical Recipes in C" getGregorianDay((sal_Int32)jday, day, month, year); // Julian -> Gregorian only works for non-negative year if ( *year <= 0 ) { *day = -1; *month = -1; *year = -1; } } /* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */ /* this algorithm only valid for non-negative gregorian year */ void Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear) { /* working variables */ long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE; long lAdjust; /* test whether to adjust for the Gregorian calendar crossover */ if (lJulianDay >= GREGORIAN_CROSSOVER) { /* calculate a small adjustment */ lAdjust = (long) (((float) (lJulianDay - 1867216) - 0.25) / 36524.25); lFactorA = lJulianDay + 1 + lAdjust - ((long) (0.25 * lAdjust)); } else { /* no adjustment needed */ lFactorA = lJulianDay; } lFactorB = lFactorA + 1524; lFactorC = (long) (6680.0 + ((float) (lFactorB - 2439870) - 122.1) / 365.25); lFactorD = (long) (365 * lFactorC + (0.25 * lFactorC)); lFactorE = (long) ((lFactorB - lFactorD) / 30.6001); /* now, pull out the day number */ *pnDay = lFactorB - lFactorD - (long) (30.6001 * lFactorE); /* ...and the month, adjusting it if necessary */ *pnMonth = lFactorE - 1; if (*pnMonth > 12) (*pnMonth) -= 12; /* ...and similarly for the year */ *pnYear = lFactorC - 4715; if (*pnMonth > 2) (*pnYear)--; // Negative year adjustments if (*pnYear <= 0) (*pnYear)--; } double Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year) { double jy, jm; if( year == 0 ) { return -1.0; } if( year == 1582 && month == 10 && day > 4 && day < 15 ) { return -1.0; } if( month > 2 ) { jy = year; jm = month + 1; } else { jy = year - 1; jm = month + 13; } sal_Int32 intgr = (sal_Int32)((sal_Int32)(365.25 * jy) + (sal_Int32)(30.6001 * jm) + day + 1720995 ); //check for switch to Gregorian calendar double gregcal = 15 + 31 * ( 10 + 12 * 1582 ); if( day + 31 * (month + 12 * year) >= gregcal ) { double ja; ja = (sal_Int32)(0.01 * jy); intgr += (sal_Int32)(2 - ja + (sal_Int32)(0.25 * ja)); } return (double) intgr; }