/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_basic.hxx" #include #include #include "sbxconv.hxx" #include "unotools/syslocale.hxx" #if defined ( UNX ) #include #endif #ifndef _APP_HXX //autogen #include #endif #include #include #include #include "sbxres.hxx" #include #include #include #include "basrid.hxx" #include "runtime.hxx" #include #include void ImpGetIntntlSep( sal_Unicode& rcDecimalSep, sal_Unicode& rcThousandSep ) { SvtSysLocale aSysLocale; const LocaleDataWrapper& rData = aSysLocale.GetLocaleData(); rcDecimalSep = rData.getNumDecimalSep().GetBuffer()[0]; rcThousandSep = rData.getNumThousandSep().GetBuffer()[0]; } // Scannen eines Strings nach BASIC-Konventionen // Dies entspricht den ueblichen Konventionen, nur dass der Exponent // auch ein D sein darf, was den Datentyp auf SbxDOUBLE festlegt. // Die Routine versucht, den Datentyp so klein wie moeglich zu gestalten. // Das ganze gibt auch noch einen Konversionsfehler, wenn der Datentyp // Fixed ist und das ganze nicht hineinpasst! SbxError ImpScan( const ::rtl::OUString& rWSrc, double& nVal, SbxDataType& rType, sal_uInt16* pLen, sal_Bool bAllowIntntl, sal_Bool bOnlyIntntl ) { ::rtl::OString aBStr( ::rtl::OUStringToOString( rWSrc, RTL_TEXTENCODING_ASCII_US ) ); // Bei International Komma besorgen char cIntntlComma, cIntntl1000; char cNonIntntlComma = '.'; sal_Unicode cDecimalSep, cThousandSep = 0; if( bAllowIntntl || bOnlyIntntl ) { ImpGetIntntlSep( cDecimalSep, cThousandSep ); cIntntlComma = (char)cDecimalSep; cIntntl1000 = (char)cThousandSep; } // Sonst einfach auch auf . setzen else { cIntntlComma = cNonIntntlComma; cIntntl1000 = cNonIntntlComma; // Unschaedlich machen } // Nur International -> IntnlComma uebernehmen if( bOnlyIntntl ) { cNonIntntlComma = cIntntlComma; cIntntl1000 = (char)cThousandSep; } const char* pStart = aBStr.getStr(); const char* p = pStart; char buf[ 80 ], *q = buf; sal_Bool bRes = sal_True; sal_Bool bMinus = sal_False; nVal = 0; SbxDataType eScanType = SbxSINGLE; // Whitespace wech while( *p &&( *p == ' ' || *p == '\t' ) ) p++; // Zahl? Dann einlesen und konvertieren. if( *p == '-' ) p++, bMinus = sal_True; if( isdigit( *p ) ||( (*p == cNonIntntlComma || *p == cIntntlComma || *p == cIntntl1000) && isdigit( *(p+1 ) ) ) ) { short exp = 0; // >0: Exponentteil short comma = 0; // >0: Nachkomma short ndig = 0; // Anzahl Ziffern short ncdig = 0; // Anzahl Ziffern nach Komma ByteString aSearchStr( "0123456789DEde" ); // Kommas ergaenzen aSearchStr += cNonIntntlComma; if( cIntntlComma != cNonIntntlComma ) aSearchStr += cIntntlComma; if( bOnlyIntntl ) aSearchStr += cIntntl1000; const char* pSearchStr = aSearchStr.GetBuffer(); while( strchr( pSearchStr, *p ) && *p ) { // 1000er-Trenner ueberlesen if( bOnlyIntntl && *p == cIntntl1000 ) { p++; continue; } // Komma oder Exponent? if( *p == cNonIntntlComma || *p == cIntntlComma ) { // Immer '.' einfuegen, damit atof funktioniert p++; if( ++comma > 1 ) continue; else *q++ = '.'; } else if( strchr( "DdEe", *p ) ) { if( ++exp > 1 ) { p++; continue; } if( toupper( *p ) == 'D' ) eScanType = SbxDOUBLE; *q++ = 'E'; p++; // Vorzeichen hinter Exponent? if( *p == '+' ) p++; else if( *p == '-' ) *q++ = *p++; } else { *q++ = *p++; if( comma && !exp ) ncdig++; } if( !exp ) ndig++; } *q = 0; // Komma, Exponent mehrfach vorhanden? if( comma > 1 || exp > 1 ) bRes = sal_False; // Kann auf Integer gefaltet werden? if( !comma && !exp ) { if( nVal >= SbxMININT && nVal <= SbxMAXINT ) eScanType = SbxINTEGER; else if( nVal >= SbxMINLNG && nVal <= SbxMAXLNG ) eScanType = SbxLONG; } nVal = atof( buf ); ndig = ndig - comma; // zu viele Zahlen fuer SINGLE? if( ndig > 15 || ncdig > 6 ) eScanType = SbxDOUBLE; // Typkennung? if( strchr( "%!&#", *p ) && *p ) p++; } // Hex/Oktalzahl? Einlesen und konvertieren: else if( *p == '&' ) { p++; eScanType = SbxLONG; const char *cmp = "0123456789ABCDEF"; char base = 16; char ndig = 8; char xch = *p++; switch( toupper( xch ) ) { case 'O': cmp = "01234567"; base = 8; ndig = 11; break; case 'H': break; default : bRes = sal_False; } sal_Int32 l = 0; int i; while( isalnum( *p ) ) { char ch = sal::static_int_cast< char >( toupper( *p ) ); p++; if( strchr( cmp, ch ) ) *q++ = ch; else bRes = sal_False; } *q = 0; for( q = buf; *q; q++ ) { i =( *q & 0xFF ) - '0'; if( i > 9 ) i -= 7; l =( l * base ) + i; if( !ndig-- ) bRes = sal_False; } if( *p == '&' ) p++; nVal = (double) l; if( l >= SbxMININT && l <= SbxMAXINT ) eScanType = SbxINTEGER; } else if ( SbiRuntime::isVBAEnabled() ) { OSL_TRACE("Reporting error converting"); return SbxERR_CONVERSION; } if( pLen ) *pLen = (sal_uInt16) ( p - pStart ); if( !bRes ) return SbxERR_CONVERSION; if( bMinus ) nVal = -nVal; rType = eScanType; return SbxERR_OK; } // Schnittstelle fuer CDbl im Basic SbxError SbxValue::ScanNumIntnl( const String& rSrc, double& nVal, sal_Bool bSingle ) { SbxDataType t; sal_uInt16 nLen = 0; SbxError nRetError = ImpScan( rSrc, nVal, t, &nLen, /*bAllowIntntl*/sal_False, /*bOnlyIntntl*/sal_True ); // Komplett gelesen? if( nRetError == SbxERR_OK && nLen != rSrc.Len() ) nRetError = SbxERR_CONVERSION; if( bSingle ) { SbxValues aValues( nVal ); nVal = (double)ImpGetSingle( &aValues ); // Hier Error bei Overflow } return nRetError; } //////////////////////////////////////////////////////////////////////////// static double roundArray[] = { 5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6, 0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14,0.5e-15 }; /*************************************************************************** |* |* void myftoa( double, char *, short, short, sal_Bool, sal_Bool ) |* |* Beschreibung: Konversion double --> ASCII |* Parameter: double die Zahl. |* char * der Zielpuffer |* short Anzahl Nachkommastellen |* short Weite des Exponenten( 0=kein E ) |* sal_Bool sal_True: mit 1000er Punkten |* sal_Bool sal_True: formatfreie Ausgabe |* ***************************************************************************/ static void myftoa( double nNum, char * pBuf, short nPrec, short nExpWidth, sal_Bool bPt, sal_Bool bFix, sal_Unicode cForceThousandSep = 0 ) { short nExp = 0; // Exponent short nDig = nPrec + 1; // Anzahl Digits in Zahl short nDec; // Anzahl Vorkommastellen register int i, digit; // Komma besorgen sal_Unicode cDecimalSep, cThousandSep; ImpGetIntntlSep( cDecimalSep, cThousandSep ); if( cForceThousandSep ) cThousandSep = cForceThousandSep; // Exponentberechnung: nExp = 0; if( nNum > 0.0 ) { while( nNum < 1.0 ) nNum *= 10.0, nExp--; while( nNum >= 10.0 ) nNum /= 10.0, nExp++; } if( !bFix && !nExpWidth ) nDig = nDig + nExp; else if( bFix && !nPrec ) nDig = nExp + 1; // Zahl runden: if( (nNum += roundArray [( nDig > 16 ) ? 16 : nDig] ) >= 10.0 ) { nNum = 1.0; ++nExp; if( !nExpWidth ) ++nDig; } // Bestimmung der Vorkommastellen: if( !nExpWidth ) { if( nExp < 0 ) { // #41691: Auch bei bFix eine 0 spendieren *pBuf++ = '0'; if( nPrec ) *pBuf++ = (char)cDecimalSep; i = -nExp - 1; if( nDig <= 0 ) i = nPrec; while( i-- ) *pBuf++ = '0'; nDec = 0; } else nDec = nExp+1; } else nDec = 1; // Zahl ausgeben: if( nDig > 0 ) { for( i = 0 ; ; ++i ) { if( i < 16 ) { digit = (int) nNum; *pBuf++ = sal::static_int_cast< char >(digit + '0'); nNum =( nNum - digit ) * 10.0; } else *pBuf++ = '0'; if( --nDig == 0 ) break; if( nDec ) { nDec--; if( !nDec ) *pBuf++ = (char)cDecimalSep; else if( !(nDec % 3 ) && bPt ) *pBuf++ = (char)cThousandSep; } } } // Exponent ausgeben: if( nExpWidth ) { if( nExpWidth < 3 ) nExpWidth = 3; nExpWidth -= 2; *pBuf++ = 'E'; *pBuf++ =( nExp < 0 ) ?( (nExp = -nExp ), '-' ) : '+'; while( nExpWidth > 3 ) *pBuf++ = '0', nExpWidth--; if( nExp >= 100 || nExpWidth == 3 ) { *pBuf++ = sal::static_int_cast< char >(nExp/100 + '0'); nExp %= 100; } if( nExp/10 || nExpWidth >= 2 ) *pBuf++ = sal::static_int_cast< char >(nExp/10 + '0'); *pBuf++ = sal::static_int_cast< char >(nExp%10 + '0'); } *pBuf = 0; } // Die Zahl wird unformatiert mit der angegebenen Anzahl NK-Stellen // aufbereitet. Evtl. wird ein Minus vorangestellt. // Diese Routine ist public, weil sie auch von den Put-Funktionen // der Klasse SbxImpSTRING verwendet wird. #ifdef _MSC_VER #pragma optimize( "", off ) #pragma warning(disable: 4748) // "... because optimizations are disabled ..." #endif void ImpCvtNum( double nNum, short nPrec, ::rtl::OUString& rRes, sal_Bool bCoreString ) { char *q; char cBuf[ 40 ], *p = cBuf; sal_Unicode cDecimalSep, cThousandSep; ImpGetIntntlSep( cDecimalSep, cThousandSep ); if( bCoreString ) cDecimalSep = '.'; if( nNum < 0.0 ) { nNum = -nNum; *p++ = '-'; } double dMaxNumWithoutExp = (nPrec == 6) ? 1E6 : 1E14; myftoa( nNum, p, nPrec,( nNum &&( nNum < 1E-1 || nNum >= dMaxNumWithoutExp ) ) ? 4:0, sal_False, sal_True, cDecimalSep ); // Trailing Zeroes weg: for( p = cBuf; *p &&( *p != 'E' ); p++ ) {} q = p; p--; while( nPrec && *p == '0' ) nPrec--, p--; if( *p == cDecimalSep ) p--; while( *q ) *++p = *q++; *++p = 0; rRes = ::rtl::OUString::createFromAscii( cBuf ); } #ifdef _MSC_VER #pragma optimize( "", on ) #endif sal_Bool ImpConvStringExt( ::rtl::OUString& rSrc, SbxDataType eTargetType ) { // Merken, ob ueberhaupt was geaendert wurde sal_Bool bChanged = sal_False; ::rtl::OUString aNewString; // Nur Spezial-Fälle behandeln, als Default tun wir nichts switch( eTargetType ) { // Bei Fliesskomma International beruecksichtigen case SbxSINGLE: case SbxDOUBLE: case SbxCURRENCY: { ::rtl::OString aBStr( ::rtl::OUStringToOString( rSrc, RTL_TEXTENCODING_ASCII_US ) ); // Komma besorgen sal_Unicode cDecimalSep, cThousandSep; ImpGetIntntlSep( cDecimalSep, cThousandSep ); aNewString = rSrc; // Ersetzen, wenn DecimalSep kein '.' (nur den ersten) if( cDecimalSep != (sal_Unicode)'.' ) { sal_Int32 nPos = aNewString.indexOf( cDecimalSep ); if( nPos != -1 ) { sal_Unicode* pStr = (sal_Unicode*)aNewString.getStr(); pStr[nPos] = (sal_Unicode)'.'; bChanged = sal_True; } } break; } // Bei sal_Bool sal_True und sal_False als String pruefen case SbxBOOL: { if( rSrc.equalsIgnoreAsciiCaseAscii( "true" ) ) { aNewString = ::rtl::OUString::valueOf( (sal_Int32)SbxTRUE ); bChanged = sal_True; } else if( rSrc.equalsIgnoreAsciiCaseAscii( "false" ) ) { aNewString = ::rtl::OUString::valueOf( (sal_Int32)SbxFALSE ); bChanged = sal_True; } break; } default: break; } // String bei Aenderung uebernehmen if( bChanged ) rSrc = aNewString; return bChanged; } // Formatierte Zahlenausgabe // Der Returnwert ist die Anzahl Zeichen, die aus dem // Format verwendt wurden. #ifdef _old_format_code_ // lasse diesen Code vorl"aufig drin, zum 'abgucken' // der bisherigen Implementation static sal_uInt16 printfmtnum( double nNum, XubString& rRes, const XubString& rWFmt ) { const String& rFmt = rWFmt; char cFill = ' '; // Fuellzeichen char cPre = 0; // Startzeichen( evtl. "$" ) short nExpDig= 0; // Anzahl Exponentstellen short nPrec = 0; // Anzahl Nachkommastellen short nWidth = 0; // Zahlenweite gesamnt short nLen; // Laenge konvertierte Zahl sal_Bool bPoint = sal_False; // sal_True: mit 1000er Kommas sal_Bool bTrail = sal_False; // sal_True, wenn folgendes Minus sal_Bool bSign = sal_False; // sal_True: immer mit Vorzeichen sal_Bool bNeg = sal_False; // sal_True: Zahl ist negativ char cBuf [1024]; // Zahlenpuffer char * p; const char* pFmt = rFmt; rRes.Erase(); // $$ und ** abfangen. Einfach wird als Zeichen ausgegeben. if( *pFmt == '$' ) if( *++pFmt != '$' ) rRes += '$'; if( *pFmt == '*' ) if( *++pFmt != '*' ) rRes += '*'; switch( *pFmt++ ) { case 0: break; case '+': bSign = sal_True; nWidth++; break; case '*': nWidth++; cFill = '*'; if( *pFmt == '$' ) nWidth++, pFmt++, cPre = '$'; break; case '$': nWidth++; cPre = '$'; break; case '#': case '.': case ',': pFmt--; break; } // Vorkomma: for( ;; ) { while( *pFmt == '#' ) pFmt++, nWidth++; // 1000er Kommas? if( *pFmt == ',' ) { nWidth++; pFmt++; bPoint = sal_True; } else break; } // Nachkomma: if( *pFmt == '.' ) { while( *++pFmt == '#' ) nPrec++; nWidth += nPrec + 1; } // Exponent: while( *pFmt == '^' ) pFmt++, nExpDig++, nWidth++; // Folgendes Minus: if( !bSign && *pFmt == '-' ) pFmt++, bTrail = sal_True; // Zahl konvertieren: if( nPrec > 15 ) nPrec = 15; if( nNum < 0.0 ) nNum = -nNum, bNeg = sal_True; p = cBuf; if( bSign ) *p++ = bNeg ? '-' : '+'; myftoa( nNum, p, nPrec, nExpDig, bPoint, sal_False ); nLen = strlen( cBuf ); // Ueberlauf? if( cPre ) nLen++; if( nLen > nWidth ) rRes += '%'; else { nWidth -= nLen; while( nWidth-- ) rRes += (xub_Unicode)cFill; if( cPre ) rRes += (xub_Unicode)cPre; } rRes += (xub_Unicode*)&(cBuf[0]); if( bTrail ) rRes += bNeg ? '-' : ' '; return (sal_uInt16) ( pFmt - (const char*) rFmt ); } #endif //_old_format_code_ static sal_uInt16 printfmtstr( const XubString& rStr, XubString& rRes, const XubString& rFmt ) { const xub_Unicode* pStr = rStr.GetBuffer(); const xub_Unicode* pFmtStart = rFmt.GetBuffer(); const xub_Unicode* pFmt = pFmtStart; rRes.Erase(); switch( *pFmt ) { case '!': rRes += *pStr++; pFmt++; break; case '\\': do { rRes += *pStr ? *pStr++ : static_cast< xub_Unicode >(' '); pFmt++; } while( *pFmt != '\\' ); rRes += *pStr ? *pStr++ : static_cast< xub_Unicode >(' '); pFmt++; break; case '&': rRes = rStr; pFmt++; break; default: rRes = rStr; break; } return (sal_uInt16) ( pFmt - pFmtStart ); } ///////////////////////////////////////////////////////////////////////// sal_Bool SbxValue::Scan( const XubString& rSrc, sal_uInt16* pLen ) { SbxError eRes = SbxERR_OK; if( !CanWrite() ) eRes = SbxERR_PROP_READONLY; else { double n; SbxDataType t; eRes = ImpScan( rSrc, n, t, pLen ); if( eRes == SbxERR_OK ) { if( !IsFixed() ) SetType( t ); PutDouble( n ); } } if( eRes ) { SetError( eRes ); return sal_False; } else return sal_True; } ResMgr* implGetResMgr( void ) { static ResMgr* pResMgr = NULL; if( !pResMgr ) { ::com::sun::star::lang::Locale aLocale = Application::GetSettings().GetUILocale(); pResMgr = ResMgr::CreateResMgr(CREATEVERSIONRESMGR_NAME(sb), aLocale ); } return pResMgr; } class SbxValueFormatResId : public ResId { public: SbxValueFormatResId( sal_uInt16 nId ) : ResId( nId, *implGetResMgr() ) {} }; enum VbaFormatType { VBA_FORMAT_TYPE_OFFSET, // standard number format VBA_FORMAT_TYPE_USERDEFINED, // user defined number format VBA_FORMAT_TYPE_NULL }; struct VbaFormatInfo { VbaFormatType meType; const char* mpVbaFormat; // Format string in vba NfIndexTableOffset meOffset; // SvNumberFormatter format index, if meType = VBA_FORMAT_TYPE_OFFSET const char* mpOOoFormat; // if meType = VBA_FORMAT_TYPE_USERDEFINED }; #define VBA_FORMAT_OFFSET( pcUtf8, eOffset ) \ { VBA_FORMAT_TYPE_OFFSET, pcUtf8, eOffset, 0 } #define VBA_FORMAT_USERDEFINED( pcUtf8, pcDefinedUtf8 ) \ { VBA_FORMAT_TYPE_USERDEFINED, pcUtf8, NF_NUMBER_STANDARD, pcDefinedUtf8 } static VbaFormatInfo pFormatInfoTable[] = { VBA_FORMAT_OFFSET( "Long Date", NF_DATE_SYSTEM_LONG ), VBA_FORMAT_USERDEFINED( "Medium Date", "DD-MMM-YY" ), VBA_FORMAT_OFFSET( "Short Date", NF_DATE_SYSTEM_SHORT ), VBA_FORMAT_USERDEFINED( "Long Time", "H:MM:SS AM/PM" ), VBA_FORMAT_OFFSET( "Medium Time", NF_TIME_HHMMAMPM ), VBA_FORMAT_OFFSET( "Short Time", NF_TIME_HHMM ), VBA_FORMAT_OFFSET( "ddddd", NF_DATE_SYSTEM_SHORT ), VBA_FORMAT_OFFSET( "dddddd", NF_DATE_SYSTEM_LONG ), VBA_FORMAT_USERDEFINED( "ttttt", "H:MM:SS AM/PM" ), VBA_FORMAT_OFFSET( "ww", NF_DATE_WW ), { VBA_FORMAT_TYPE_NULL, 0, NF_INDEX_TABLE_ENTRIES, 0 } }; VbaFormatInfo* getFormatInfo( const String& rFmt ) { VbaFormatInfo* pInfo = NULL; sal_Int16 i = 0; while( (pInfo = pFormatInfoTable + i )->mpVbaFormat != NULL ) { if( rFmt.EqualsIgnoreCaseAscii( pInfo->mpVbaFormat ) ) break; i++; } return pInfo; } #define VBAFORMAT_GENERALDATE "General Date" #define VBAFORMAT_C "c" #define VBAFORMAT_N "n" #define VBAFORMAT_NN "nn" #define VBAFORMAT_W "w" #define VBAFORMAT_Y "y" #define VBAFORMAT_LOWERCASE "<" #define VBAFORMAT_UPPERCASE ">" // From methods1.cxx sal_Int16 implGetWeekDay( double aDate, bool bFirstDayParam = false, sal_Int16 nFirstDay = 0 ); // from methods.cxx sal_Int16 implGetMinute( double dDate ); sal_Int16 implGetDateYear( double aDate ); sal_Bool implDateSerial( sal_Int16 nYear, sal_Int16 nMonth, sal_Int16 nDay, double& rdRet ); void SbxValue::Format( XubString& rRes, const XubString* pFmt ) const { short nComma = 0; double d = 0; // pflin, It is better to use SvNumberFormatter to handle the date/time/number format. // the SvNumberFormatter output is mostly compatible with // VBA output besides the OOo-basic output if( pFmt && !SbxBasicFormater::isBasicFormat( *pFmt ) ) { String aStr = GetString(); SvtSysLocale aSysLocale; const CharClass& rCharClass = aSysLocale.GetCharClass(); if( pFmt->EqualsIgnoreCaseAscii( VBAFORMAT_LOWERCASE ) ) { rCharClass.toLower( aStr ); rRes = aStr; return; } if( pFmt->EqualsIgnoreCaseAscii( VBAFORMAT_UPPERCASE ) ) { rCharClass.toUpper( aStr ); rRes = aStr; return; } LanguageType eLangType = GetpApp()->GetSettings().GetLanguage(); com::sun::star::uno::Reference< com::sun::star::lang::XMultiServiceFactory > xFactory = comphelper::getProcessServiceFactory(); SvNumberFormatter aFormatter( xFactory, eLangType ); sal_uInt32 nIndex; xub_StrLen nCheckPos = 0; short nType; double nNumber; Color* pCol; sal_Bool bSuccess = aFormatter.IsNumberFormat( aStr, nIndex, nNumber ); // number format, use SvNumberFormatter to handle it. if( bSuccess ) { String aFmtStr = *pFmt; VbaFormatInfo* pInfo = getFormatInfo( aFmtStr ); if( pInfo && pInfo->meType != VBA_FORMAT_TYPE_NULL ) { if( pInfo->meType == VBA_FORMAT_TYPE_OFFSET ) { nIndex = aFormatter.GetFormatIndex( pInfo->meOffset, eLangType ); } else { aFmtStr.AssignAscii( pInfo->mpOOoFormat ); aFormatter.PutandConvertEntry( aFmtStr, nCheckPos, nType, nIndex, LANGUAGE_ENGLISH, eLangType ); } aFormatter.GetOutputString( nNumber, nIndex, rRes, &pCol ); } else if( aFmtStr.EqualsIgnoreCaseAscii( VBAFORMAT_GENERALDATE ) || aFmtStr.EqualsIgnoreCaseAscii( VBAFORMAT_C )) { if( nNumber <=-1.0 || nNumber >= 1.0 ) { // short date nIndex = aFormatter.GetFormatIndex( NF_DATE_SYSTEM_SHORT, eLangType ); aFormatter.GetOutputString( nNumber, nIndex, rRes, &pCol ); // long time if( floor( nNumber ) != nNumber ) { aFmtStr.AssignAscii( "H:MM:SS AM/PM" ); aFormatter.PutandConvertEntry( aFmtStr, nCheckPos, nType, nIndex, LANGUAGE_ENGLISH, eLangType ); String aTime; aFormatter.GetOutputString( nNumber, nIndex, aTime, &pCol ); rRes.AppendAscii(" "); rRes += aTime; } } else { // long time only aFmtStr.AssignAscii( "H:MM:SS AM/PM" ); aFormatter.PutandConvertEntry( aFmtStr, nCheckPos, nType, nIndex, LANGUAGE_ENGLISH, eLangType ); aFormatter.GetOutputString( nNumber, nIndex, rRes, &pCol ); } } else if( aFmtStr.EqualsIgnoreCaseAscii( VBAFORMAT_N ) || aFmtStr.EqualsIgnoreCaseAscii( VBAFORMAT_NN )) { sal_Int32 nMin = implGetMinute( nNumber ); if( nMin < 10 && aFmtStr.EqualsIgnoreCaseAscii( VBAFORMAT_NN ) ) { // Minute in two digits sal_Unicode* p = rRes.AllocBuffer( 2 ); *p++ = '0'; *p = sal_Unicode( '0' + nMin ); } else { rRes = String::CreateFromInt32( nMin ); } } else if( aFmtStr.EqualsIgnoreCaseAscii( VBAFORMAT_W )) { sal_Int32 nWeekDay = implGetWeekDay( nNumber ); rRes = String::CreateFromInt32( nWeekDay ); } else if( aFmtStr.EqualsIgnoreCaseAscii( VBAFORMAT_Y )) { sal_Int16 nYear = implGetDateYear( nNumber ); double dBaseDate; implDateSerial( nYear, 1, 1, dBaseDate ); sal_Int32 nYear32 = 1 + sal_Int32( nNumber - dBaseDate ); rRes = String::CreateFromInt32( nYear32 ); } else { aFormatter.PutandConvertEntry( aFmtStr, nCheckPos, nType, nIndex, LANGUAGE_ENGLISH, eLangType ); aFormatter.GetOutputString( nNumber, nIndex, rRes, &pCol ); } return; } } SbxDataType eType = GetType(); switch( eType ) { case SbxCHAR: case SbxBYTE: case SbxINTEGER: case SbxUSHORT: case SbxLONG: case SbxULONG: case SbxINT: case SbxUINT: case SbxNULL: // #45929 NULL mit durchschummeln nComma = 0; goto cvt; case SbxSINGLE: nComma = 6; goto cvt; case SbxDOUBLE: nComma = 14; cvt: if( eType != SbxNULL ) d = GetDouble(); // #45355 weiterer Einsprungpunkt fuer isnumeric-String cvt2: if( pFmt ) { // hole die 'statischen' Daten f"ur Sbx SbxAppData* pData = GetSbxData_Impl(); LanguageType eLangType = GetpApp()->GetSettings().GetLanguage(); if( pData->pBasicFormater ) { if( pData->eBasicFormaterLangType != eLangType ) { delete pData->pBasicFormater; pData->pBasicFormater = NULL; } } pData->eBasicFormaterLangType = eLangType; // falls bisher noch kein BasicFormater-Objekt // existiert, so erzeuge dieses if( !pData->pBasicFormater ) { SvtSysLocale aSysLocale; const LocaleDataWrapper& rData = aSysLocale.GetLocaleData(); sal_Unicode cComma = rData.getNumDecimalSep().GetBuffer()[0]; sal_Unicode c1000 = rData.getNumThousandSep().GetBuffer()[0]; String aCurrencyStrg = rData.getCurrSymbol(); // Initialisierung des Basic-Formater-Hilfsobjekts: // hole die Resourcen f"ur die vordefinierten Ausgaben // des Format()-Befehls, z.B. f"ur "On/Off". String aOnStrg = String( SbxValueFormatResId( STR_BASICKEY_FORMAT_ON ) ); String aOffStrg = String( SbxValueFormatResId( STR_BASICKEY_FORMAT_OFF) ); String aYesStrg = String( SbxValueFormatResId( STR_BASICKEY_FORMAT_YES) ); String aNoStrg = String( SbxValueFormatResId( STR_BASICKEY_FORMAT_NO) ); String aTrueStrg = String( SbxValueFormatResId( STR_BASICKEY_FORMAT_TRUE) ); String aFalseStrg = String( SbxValueFormatResId( STR_BASICKEY_FORMAT_FALSE) ); String aCurrencyFormatStrg = String( SbxValueFormatResId( STR_BASICKEY_FORMAT_CURRENCY) ); // erzeuge das Basic-Formater-Objekt pData->pBasicFormater = new SbxBasicFormater( cComma,c1000,aOnStrg,aOffStrg, aYesStrg,aNoStrg,aTrueStrg,aFalseStrg, aCurrencyStrg,aCurrencyFormatStrg ); } // Bem.: Aus Performance-Gr"unden wird nur EIN BasicFormater- // Objekt erzeugt und 'gespeichert', dadurch erspart man // sich das teure Resourcen-Laden (f"ur landesspezifische // vordefinierte Ausgaben, z.B. "On/Off") und die st"andige // String-Erzeugungs Operationen. // ABER: dadurch ist dieser Code NICHT multithreading f"ahig ! // hier gibt es Probleme mit ;;;Null, da diese Methode nur aufgerufen // wird, wenn der SbxValue eine Zahl ist !!! // dazu koennte: pData->pBasicFormater->BasicFormatNull( *pFmt ); aufgerufen werden ! if( eType != SbxNULL ) { rRes = pData->pBasicFormater->BasicFormat( d ,*pFmt ); } else { rRes = pData->pBasicFormater->BasicFormatNull( *pFmt ); } // Die alte Implementierung: //old: printfmtnum( GetDouble(), rRes, *pFmt ); } else { ::rtl::OUString aTmpString( rRes ); ImpCvtNum( GetDouble(), nComma, aTmpString ); rRes = aTmpString; } break; case SbxSTRING: if( pFmt ) { // #45355 wenn es numerisch ist, muss gewandelt werden if( IsNumericRTL() ) { ScanNumIntnl( GetString(), d, /*bSingle*/sal_False ); goto cvt2; } else { // Sonst String-Formatierung printfmtstr( GetString(), rRes, *pFmt ); } } else rRes = GetString(); break; default: rRes = GetString(); } }