/**************************************************************
 * 
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 * 
 *************************************************************/



// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"

#include <malloc.h>

#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>

#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"

#include "share.hxx"


using namespace ::rtl;
using namespace ::com::sun::star::uno;

namespace
{


//==================================================================================================
static void callVirtualMethod(
    void * pAdjustedThisPtr,
    sal_Int32 nVtableIndex,
    void * pRegisterReturn,
    typelib_TypeClass eReturnType,
    char * pPT,
    sal_Int32 * pStackLongs,
    sal_Int32 nStackLongs)
{

  // parameter list is mixed list of * and values
  // reference parameters are pointers

  // the basic idea here is to use gpr[8] as a storage area for
  // the future values of registers r3 to r10 needed for the call, 
  // and similarly fpr[8] as a storage area for the future values
  // of floating point registers f1 to f8

     unsigned long * mfunc;        // actual function to be invoked
     void (*ptr)();
     int gpr[8];                   // storage for gpregisters, map to r3-r10
     int off;                      // offset used to find function
#ifndef __NO_FPRS__
     double fpr[8];                // storage for fpregisters, map to f1-f8
     int f;                        // number of fprs mapped so far
     double dret;                  // temporary function return values
#endif
     int n;                        // number of gprs mapped so far
     long *p;                      // pointer to parameter overflow area
     int c;                        // character of parameter type being decoded
     int iret, iret2;

     // Because of the Power PC calling conventions we could be passing
     // parameters in both register types and on the stack. To create the
     // stack parameter area we need we now simply allocate local
     // variable storage param[] that is at least the size of the parameter stack
     // (more than enough space) which we can overwrite the parameters into.

     // Note: This keeps us from having to decode the signature twice and
     // prevents problems with later local variables.

     // Note: could require up to  2*nStackLongs words of parameter stack area 
     // if the call has many float parameters (i.e. floats take up only 1 
     // word on the stack but double takes 2 words in parameter area in the
     // stack frame .

     // Update! floats on the outgoing parameter stack only take up 1 word
     // (stfs is used) which is not correct according to the ABI but we
     // will match what the compiler does until this is figured out 

     // this grows the current stack to the appropriate size
     // and sets the outgoing stack pointer p to the right place
     __asm__ __volatile__ (
          "rlwinm %0,%0,3,3,28\n\t"
          "addi %0,%0,22\n\t"
          "rlwinm %0,%0,0,4,28\n\t"
          "lwz 0,0(1)\n\t"
          "subf 1,%0,1\n\t"
          "stw 0,0(1)\n\t"
          : : "r" (nStackLongs) : "0" );

     __asm__ __volatile__ ( "addi %0,1,8" : "=r" (p) : );

     // never called
     // if (! pAdjustedThisPtr ) dummy_can_throw_anything("xxx"); // address something


     // now begin to load the C++ function arguments into storage
     n = 0;
#ifndef __NO_FPRS__
     f = 0;
#endif

     // now we need to parse the entire signature string */
     // until we get the END indicator */

     // treat complex return pointer like any other parameter //

#if 0
     /* Let's figure out what is really going on here*/
     fprintf(stderr,"callVirtualMethod parameters string is %s\n",pPT);
     int k = nStackLongs;
     long * q = (long *)pStackLongs;
     while (k > 0) {
       fprintf(stderr,"uno stack is: %x\n",*q);
       k--;
       q++;
     }
#endif

     /* parse the argument list up to the ending ) */
     while (*pPT != 'X') {
       c = *pPT;
       switch (c) {
       case 'D':                   /* type is double */
#ifndef __NO_FPRS__
            if (f < 8) {
               fpr[f++] = *((double *)pStackLongs);   /* store in register */
#else
            if (n & 1)
               n++;
            if (n < 8) {
               gpr[n++] = *pStackLongs;
               gpr[n++] = *(pStackLongs+1);
#endif
	    } else {
	       if (((long) p) & 4)          
	          p++;
               *p++ = *pStackLongs;       /* or on the parameter stack */
               *p++ = *(pStackLongs + 1);
	    }
            pStackLongs += 2;
            break;

       case 'F':                   /* type is float */
	 /* this assumes that floats are stored as 1 32 bit word on param
	    stack and that if passed in parameter stack to C, should be
	    as double word.

            Whoops: the abi is not actually followed by gcc, need to 
            store floats as a *single* word on outgoing parameter stack
            to match what gcc actually does
	 */
#ifndef __NO_FPRS__
            if (f < 8) {
               fpr[f++] = *((float *)pStackLongs);
#else
            if (n < 8) {
               gpr[n++] = *pStackLongs;
#endif
	    } else {
#if 0 /* if abi were followed */
	       if (((long) p) & 4)          
	          p++;
	       *((double *)p) = *((float *)pStackLongs);
               p += 2;
#else
	       *((float *)p) = *((float *)pStackLongs);
               p += 1;
#endif
	    }
            pStackLongs += 1;
            break;

       case 'H':                /* type is long long */
            if (n & 1) n++; 	/* note even elements gpr[] will map to
                                   odd registers*/
            if (n <= 6) {
               gpr[n++] = *pStackLongs;
               gpr[n++] = *(pStackLongs+1);
	    } else {
	       if (((long) p) & 4)          
	          p++;
               *p++ = *pStackLongs;
               *p++ = *(pStackLongs+1);
	    }
            pStackLongs += 2;
            break;

       case 'S':
            if (n < 8) {
               gpr[n++] = *((unsigned short*)pStackLongs);
	    } else {
               *p++ = *((unsigned short *)pStackLongs);
	    }
            pStackLongs += 1;
            break;

       case 'B':
            if (n < 8) {
               gpr[n++] = *((char *)pStackLongs);
	    } else {
               *p++ = *((char *)pStackLongs);
	    }
            pStackLongs += 1;
            break;

       default:
            if (n < 8) {
               gpr[n++] = *pStackLongs;
	    } else {
               *p++ = *pStackLongs;
	    }
            pStackLongs += 1;
            break;
       }
       pPT++;
     }

     /* figure out the address of the function we need to invoke */
     off = nVtableIndex; 
     off = off * 4;                         // 4 bytes per slot
     mfunc = *((unsigned long **)pAdjustedThisPtr);    // get the address of the vtable
     mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset 
     mfunc = *((unsigned long **)mfunc);                 // the function is stored at the address
     ptr = (void (*)())mfunc;   

    /* Set up the machine registers and invoke the function */

    __asm__ __volatile__ (
		"lwz	3,	0(%0)\n\t"
		"lwz	4,	4(%0)\n\t"
		"lwz	5,	8(%0)\n\t"
		"lwz	6,	12(%0)\n\t"
		"lwz	7,	16(%0)\n\t"
		"lwz	8,	20(%0)\n\t"
		"lwz	9,	24(%0)\n\t"
		"lwz	10,	28(%0)\n\t"
#ifndef __NO_FPRS__
		"lfd	1,	0(%1)\n\t"
		"lfd	2,	8(%1)\n\t"
		"lfd	3,	16(%1)\n\t"
		"lfd	4,	24(%1)\n\t"
		"lfd	5,	32(%1)\n\t"
		"lfd	6,	40(%1)\n\t"
		"lfd	7,	48(%1)\n\t"
		"lfd	8,	56(%1)\n\t"
	        : : "r" (gpr), "r" (fpr)
#else
	        : : "r" (gpr)
#endif
		: "0", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"
    );

    (*ptr)();

    __asm__ __volatile__ (
       "mr     %0,     3\n\t"
       "mr     %1,     4\n\t"
#ifndef __NO_FPRS__
       "fmr    %2,     1\n\t"
       : "=r" (iret), "=r" (iret2), "=f" (dret)
#else
       : "=r" (iret), "=r" (iret2)
#endif
       : );

    switch( eReturnType )
	{
		case typelib_TypeClass_HYPER:
		case typelib_TypeClass_UNSIGNED_HYPER:
		        ((long*)pRegisterReturn)[0] = iret;
			((long*)pRegisterReturn)[1] = iret2;
		case typelib_TypeClass_LONG:
		case typelib_TypeClass_UNSIGNED_LONG:
		case typelib_TypeClass_ENUM:
			((long*)pRegisterReturn)[0] = iret;
			break;
		case typelib_TypeClass_CHAR:
		case typelib_TypeClass_SHORT:
		case typelib_TypeClass_UNSIGNED_SHORT:
		        *(unsigned short*)pRegisterReturn = (unsigned short)iret;
			break;
		case typelib_TypeClass_BOOLEAN:
		case typelib_TypeClass_BYTE:
		        *(unsigned char*)pRegisterReturn = (unsigned char)iret;
			break;
		case typelib_TypeClass_FLOAT:
#ifndef __NO_FPRS__
		        *(float*)pRegisterReturn = (float)dret;
#else
		        ((unsigned int*)pRegisterReturn)[0] = iret;
#endif
			break;
		case typelib_TypeClass_DOUBLE:
#ifndef __NO_FPRS__
			*(double*)pRegisterReturn = dret;
#else
			((unsigned int*)pRegisterReturn)[0] = iret;
			((unsigned int*)pRegisterReturn)[1] = iret2;
#endif
			break;
		default:
			break;
	}
}


//================================================================================================== 
static void cpp_call(
	bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
	bridges::cpp_uno::shared::VtableSlot  aVtableSlot,
	typelib_TypeDescriptionReference * pReturnTypeRef,
	sal_Int32 nParams, typelib_MethodParameter * pParams,
	void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
  	// max space for: [complex ret ptr], values|ptr ...
  	char * pCppStack		=
  		(char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
  	char * pCppStackStart	= pCppStack;
	
        // need to know parameter types for callVirtualMethod so generate a signature string
        char * pParamType = (char *) alloca(nParams+2);
        char * pPT = pParamType;

	// return
	typelib_TypeDescription * pReturnTypeDescr = 0;
	TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
	// OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
	
	void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
	
	if (pReturnTypeDescr)
	{
		if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
		{
			pCppReturn = pUnoReturn; // direct way for simple types
		}
		else
		{
			// complex return via ptr
			pCppReturn = *(void **)pCppStack = 
                              (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
			       ? alloca( pReturnTypeDescr->nSize ): pUnoReturn); // direct way
                        *pPT++ = 'I'; //signify that a complex return type on stack
			pCppStack += sizeof(void *);
		}
	}
	// push this
        void* pAdjustedThisPtr = reinterpret_cast< void **>(pThis->getCppI()) + aVtableSlot.offset;
	*(void**)pCppStack = pAdjustedThisPtr;
	pCppStack += sizeof( void* );
        *pPT++ = 'I';

	// stack space
	// OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
	// args
	void ** pCppArgs  = (void **)alloca( 3 * sizeof(void *) * nParams );
	// indizes of values this have to be converted (interface conversion cpp<=>uno)
	sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
	// type descriptions for reconversions
	typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
	
	sal_Int32 nTempIndizes   = 0;
	
	for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
	{
		const typelib_MethodParameter & rParam = pParams[nPos];
		typelib_TypeDescription * pParamTypeDescr = 0;
		TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
		
		if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
		{
			uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
									pThis->getBridge()->getUno2Cpp() );
			
			switch (pParamTypeDescr->eTypeClass)
			{

                          // we need to know type of each param so that we know whether to use
                          // gpr or fpr to pass in parameters:
                          // Key: I - int, long, pointer, etc means pass in gpr
                          //      B - byte value passed in gpr
                          //      S - short value passed in gpr
                          //      F - float value pass in fpr
                          //      D - double value pass in fpr
                          //      H - long long int pass in proper pairs of gpr (3,4) (5,6), etc
                          //      X - indicates end of parameter description string

		          case typelib_TypeClass_LONG:
		          case typelib_TypeClass_UNSIGNED_LONG:
		          case typelib_TypeClass_ENUM:
			    *pPT++ = 'I';
			    break;
 		          case typelib_TypeClass_SHORT:
		          case typelib_TypeClass_CHAR:
		          case typelib_TypeClass_UNSIGNED_SHORT:
                            *pPT++ = 'S';
                            break;
		          case typelib_TypeClass_BOOLEAN:
		          case typelib_TypeClass_BYTE:
                            *pPT++ = 'B';
                            break;
		          case typelib_TypeClass_FLOAT:
                            *pPT++ = 'F';
			    break;
		        case typelib_TypeClass_DOUBLE:
			    *pPT++ = 'D';
			    pCppStack += sizeof(sal_Int32); // extra long
			    break;
			case typelib_TypeClass_HYPER:
			case typelib_TypeClass_UNSIGNED_HYPER:
			    *pPT++ = 'H';
			    pCppStack += sizeof(sal_Int32); // extra long
			default:
			    break;
			}

			// no longer needed
			TYPELIB_DANGER_RELEASE( pParamTypeDescr );
		}
		else // ptr to complex value | ref
		{
			if (! rParam.bIn) // is pure out
			{
				// cpp out is constructed mem, uno out is not!
				uno_constructData(
					*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
					pParamTypeDescr );
				pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
				// will be released at reconversion
				ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
			}
			// is in/inout
			else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
			{
				uno_copyAndConvertData(
					*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
					pUnoArgs[nPos], pParamTypeDescr, 
                                        pThis->getBridge()->getUno2Cpp() );
				
				pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
				// will be released at reconversion
				ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
			}
			else // direct way
			{
				*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
				// no longer needed
				TYPELIB_DANGER_RELEASE( pParamTypeDescr );
			}
                        // KBH: FIXME: is this the right way to pass these
                        *pPT++='I';
		}
		pCppStack += sizeof(sal_Int32); // standard parameter length
	}
  
        // terminate the signature string
        *pPT++='X';
        *pPT=0;

	try
	{
		OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" );
		callVirtualMethod(
			pAdjustedThisPtr, aVtableSlot.index,
			pCppReturn, pReturnTypeDescr->eTypeClass, pParamType,
			(sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
		// NO exception occurred...
		*ppUnoExc = 0;
		
		// reconvert temporary params
		for ( ; nTempIndizes--; )
		{
			sal_Int32 nIndex = pTempIndizes[nTempIndizes];
			typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
			
			if (pParams[nIndex].bIn)
			{
				if (pParams[nIndex].bOut) // inout
				{
					uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
					uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
											pThis->getBridge()->getCpp2Uno() );
				}
			}
			else // pure out
			{
				uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
										pThis->getBridge()->getCpp2Uno() );
			}
			// destroy temp cpp param => cpp: every param was constructed
			uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
			
			TYPELIB_DANGER_RELEASE( pParamTypeDescr );
		}
		// return value
		if (pCppReturn && pUnoReturn != pCppReturn)
		{
			uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
									pThis->getBridge()->getCpp2Uno() );
			uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
		}
	}
 	catch (...)
 	{
  		// fill uno exception
		fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, 
                                  *ppUnoExc, pThis->getBridge()->getCpp2Uno() );
        
		// temporary params
		for ( ; nTempIndizes--; )
		{
			sal_Int32 nIndex = pTempIndizes[nTempIndizes];
			// destroy temp cpp param => cpp: every param was constructed
			uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
			TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
		}
		// return type
		if (pReturnTypeDescr)
			TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
	}
}

}

namespace bridges { namespace cpp_uno { namespace shared {

void unoInterfaceProxyDispatch(
	uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
	void * pReturn, void * pArgs[], uno_Any ** ppException )
{
	// is my surrogate
        bridges::cpp_uno::shared::UnoInterfaceProxy * pThis 
            = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
	
	switch (pMemberDescr->eTypeClass)
	{
	case typelib_TypeClass_INTERFACE_ATTRIBUTE:
	{

        VtableSlot aVtableSlot(
            getVtableSlot(
                reinterpret_cast<
                    typelib_InterfaceAttributeTypeDescription const * >(
                        pMemberDescr)));

		if (pReturn)
		{
			// dependent dispatch
			cpp_call(
				pThis, aVtableSlot,
				((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
				0, 0, // no params
				pReturn, pArgs, ppException );
		}
		else
		{
			// is SET
			typelib_MethodParameter aParam;
			aParam.pTypeRef =
				((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
			aParam.bIn		= sal_True;
			aParam.bOut		= sal_False;

			typelib_TypeDescriptionReference * pReturnTypeRef = 0;
			OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
			typelib_typedescriptionreference_new(
				&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
			
			// dependent dispatch
                        aVtableSlot.index += 1; //get then set method
			cpp_call(
				pThis, aVtableSlot,
				pReturnTypeRef,
				1, &aParam,
				pReturn, pArgs, ppException );
			
			typelib_typedescriptionreference_release( pReturnTypeRef );
		}
		
		break;
	}
	case typelib_TypeClass_INTERFACE_METHOD:
	{

        VtableSlot aVtableSlot(
            getVtableSlot(
                reinterpret_cast<
                    typelib_InterfaceMethodTypeDescription const * >(
                        pMemberDescr)));
		switch (aVtableSlot.index)
		{
			// standard calls
		case 1: // acquire uno interface
			(*pUnoI->acquire)( pUnoI );
			*ppException = 0;
			break;
		case 2: // release uno interface
			(*pUnoI->release)( pUnoI );
			*ppException = 0;
			break;
		case 0: // queryInterface() opt
		{
			typelib_TypeDescription * pTD = 0;
			TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
			if (pTD)
			{
                uno_Interface * pInterface = 0;
                (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
                    pThis->pBridge->getUnoEnv(),
                    (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
			
                if (pInterface)
                {
                    ::uno_any_construct(
                        reinterpret_cast< uno_Any * >( pReturn ),
                        &pInterface, pTD, 0 );
                    (*pInterface->release)( pInterface );
                    TYPELIB_DANGER_RELEASE( pTD );
                    *ppException = 0;
                    break;
                }
                TYPELIB_DANGER_RELEASE( pTD );
            }
		} // else perform queryInterface()
		default:
			// dependent dispatch
			cpp_call(
				pThis, aVtableSlot,
				((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
				((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
				((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
				pReturn, pArgs, ppException );
		}
		break;
	}
	default:
	{
		::com::sun::star::uno::RuntimeException aExc(
			OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
			::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
		
		Type const & rExcType = ::getCppuType( &aExc );
		// binary identical null reference
		::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
	}
	}
}

} } }