/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_bridges.hxx" #include #include #include #include "bridges/cpp_uno/shared/bridge.hxx" #include "bridges/cpp_uno/shared/types.hxx" #include "bridges/cpp_uno/shared/unointerfaceproxy.hxx" #include "bridges/cpp_uno/shared/vtables.hxx" #include "share.hxx" #include #include using namespace ::rtl; using namespace ::com::sun::star::uno; void MapReturn(long r3, double dret, typelib_TypeClass eTypeClass, void *pRegisterReturn) { switch (eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: *reinterpret_cast( pRegisterReturn ) = r3; break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *reinterpret_cast( pRegisterReturn ) = r3; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *reinterpret_cast( pRegisterReturn ) = (unsigned short)r3; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *reinterpret_cast( pRegisterReturn ) = (unsigned char)r3; break; case typelib_TypeClass_FLOAT: *reinterpret_cast( pRegisterReturn ) = dret; break; case typelib_TypeClass_DOUBLE: *reinterpret_cast( pRegisterReturn ) = dret; break; default: break; } } namespace { //================================================================================================== static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr, sal_uInt64 *pStack, sal_uInt32 nStack, sal_uInt64 *pGPR, sal_uInt32 nGPR, double *pFPR, sal_uInt32 nFPR) { // Stack, if used, must be 16-bytes aligned if ( nStack ) nStack = ( nStack + 1 ) & ~1; // Should not happen, but... if ( nFPR > ppc64::MAX_SSE_REGS ) nFPR = ppc64::MAX_SSE_REGS; if ( nGPR > ppc64::MAX_GPR_REGS ) nGPR = ppc64::MAX_GPR_REGS; #ifdef CMC_DEBUG // Let's figure out what is really going on here { fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR ); for ( int i = 0; i < nGPR; ++i ) fprintf( stderr, "0x%lx, ", pGPR[i] ); fprintf( stderr, "\nFPR's (%d): ", nFPR ); for ( int i = 0; i < nFPR; ++i ) fprintf( stderr, "0x%lx (%f), ", pFPR[i], pFPR[i] ); fprintf( stderr, "\nStack (%d): ", nStack ); for ( int i = 0; i < nStack; ++i ) fprintf( stderr, "0x%lx, ", pStack[i] ); fprintf( stderr, "\n" ); } #endif // Load parameters to stack, if necessary sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 ); memcpy( stack, pStack, nStack * 8 ); // Get pointer to method sal_uInt64 pMethod = *((sal_uInt64 *)pThis); pMethod += 8 * nVtableIndex; pMethod = *((sal_uInt64 *)pMethod); typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 ); FunctionCall pFunc = (FunctionCall)pMethod; volatile double dret; // fill registers __asm__ __volatile__ ( "ld 3, 0(%0)\n\t" "ld 4, 8(%0)\n\t" "ld 5, 16(%0)\n\t" "ld 6, 24(%0)\n\t" "ld 7, 32(%0)\n\t" "ld 8, 40(%0)\n\t" "ld 9, 48(%0)\n\t" "ld 10, 56(%0)\n\t" "lfd 1, 0(%1)\n\t" "lfd 2, 8(%1)\n\t" "lfd 3, 16(%1)\n\t" "lfd 4, 24(%1)\n\t" "lfd 5, 32(%1)\n\t" "lfd 6, 40(%1)\n\t" "lfd 7, 48(%1)\n\t" "lfd 8, 56(%1)\n\t" "lfd 9, 64(%1)\n\t" "lfd 10, 72(%1)\n\t" "lfd 11, 80(%1)\n\t" "lfd 12, 88(%1)\n\t" "lfd 13, 96(%1)\n\t" : : "r" (pGPR), "r" (pFPR) : "r0", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9", "fr10", "fr11", "fr12", "fr13" ); // tell gcc that r3 to r11 are not available to it for doing the TOC and exception munge on the func call register sal_uInt64 r3 asm("r3"); register sal_uInt64 r4 asm("r4"); register sal_uInt64 r5 asm("r5"); register sal_uInt64 r6 asm("r6"); register sal_uInt64 r7 asm("r7"); register sal_uInt64 r8 asm("r8"); register sal_uInt64 r9 asm("r9"); register sal_uInt64 r10 asm("r10"); register sal_uInt64 r11 asm("r11"); (*pFunc)(r3, r4, r5, r6, r7, r8, r9, r10); // get return value __asm__ __volatile__ ( "mr %1, 3\n\t" "mr %2, 4\n\t" "fmr %0, 1\n\t" : "=f" (dret), "=r" (r3), "=r" (r4) : ); MapReturn(r3, dret, pReturnTypeDescr->eTypeClass, pRegisterReturn); } // Macros for easier insertion of values to registers or stack // pSV - pointer to the source // nr - order of the value [will be increased if stored to register] // pFPR, pGPR - pointer to the registers // pDS - pointer to the stack [will be increased if stored here] // The value in %xmm register is already prepared to be retrieved as a float, // thus we treat float and double the same #define INSERT_FLOAT( pSV, nr, pFPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_SSE_REGS ) \ pFPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_DOUBLE( pSV, nr, pFPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_SSE_REGS ) \ pFPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_INT64( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \ if ( nr < ppc64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ bOverFlow = true; \ if (bOverFlow) \ *pDS++ = *reinterpret_cast( pSV ); //================================================================================================== static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) ); sal_uInt64 * pStackStart = pStack; sal_uInt64 pGPR[ppc64::MAX_GPR_REGS]; sal_uInt32 nGPR = 0; double pFPR[ppc64::MAX_SSE_REGS]; sal_uInt32 nFPR = 0; // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" ); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion bool bOverFlow = false; if (pReturnTypeDescr) { #ifdef CMC_DEBUG fprintf(stderr, "return type is %d\n", pReturnTypeDescr->eTypeClass); #endif if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types #ifdef CMC_DEBUG fprintf(stderr, "simple return\n"); #endif } else { // complex return via ptr pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pUnoReturn); #ifdef CMC_DEBUG fprintf(stderr, "pCppReturn/pUnoReturn is %lx/%lx", pCppReturn, pUnoReturn); #endif INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack, bOverFlow ); } } // push "this" pointer void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset; #ifdef CMC_DEBUG fprintf(stderr, "this pointer is %p\n", pAdjustedThisPtr); #endif INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack, bOverFlow ); // Args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndizes = 0; #ifdef CMC_DEBUG fprintf(stderr, "n params is %d\n", nParams); #endif for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); #ifdef CMC_DEBUG fprintf(stderr, "param %d is %d %d %d\n", nPos, rParam.bOut, bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ), pParamTypeDescr->eTypeClass); #endif if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { // uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr, uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: #ifdef CMC_DEBUG fprintf(stderr, "hyper is %lx\n", pCppArgs[nPos]); #endif INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: #ifdef CMC_DEBUG fprintf(stderr, "long is %x\n", pCppArgs[nPos]); #endif INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow ); break; case typelib_TypeClass_FLOAT: INSERT_FLOAT( pCppArgs[nPos], nFPR, pFPR, pStack, bOverFlow ); break; case typelib_TypeClass_DOUBLE: INSERT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, pStack, bOverFlow ); break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { #ifdef CMC_DEBUG fprintf(stderr, "complex type again %d\n", rParam.bIn); #endif if (! rParam.bIn) // is pure out { #ifdef CMC_DEBUG fprintf(stderr, "complex size is %d\n", pParamTypeDescr->nSize ); #endif // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { #ifdef CMC_DEBUG fprintf(stderr, "this one\n"); #endif uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { #ifdef CMC_DEBUG fprintf(stderr, "that one, passing %lx through\n", pUnoArgs[nPos]); #endif pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack, bOverFlow ); } } try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr, pStackStart, ( pStack - pStackStart ), pGPR, nGPR, pFPR, nFPR ); // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges { namespace cpp_uno { namespace shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") ); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = ::getCppuType( &aExc ); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } } }