/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ #include #include #include #include "bridges/cpp_uno/shared/bridge.hxx" #include "bridges/cpp_uno/shared/types.hxx" #include "bridges/cpp_uno/shared/unointerfaceproxy.hxx" #include "bridges/cpp_uno/shared/vtables.hxx" #include "share.hxx" //#define BRDEBUG #ifdef BRDEBUG #include #endif using namespace ::rtl; using namespace ::com::sun::star::uno; namespace { //================================================================================================== static void callVirtualMethod( void * pAdjustedThisPtr, sal_Int32 nVtableIndex, void * pRegisterReturn, typelib_TypeClass eReturnType, char * pPT, sal_Int32 * pStackLongs, sal_Int32 /*nStackLongs*/) { // parameter list is mixed list of * and values // reference parameters are pointers unsigned long * mfunc; // actual function to be invoked void (*ptr)(); int gpr[4]; // storage for gpregisters, map to a0-a3 int off; // offset used to find function int nw; // number of words mapped long *p; // pointer to parameter overflow area int c; // character of parameter type being decoded int iret, iret2; // temporary function return values // never called if (! pAdjustedThisPtr ) CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something #ifdef BRDEBUG fprintf(stderr,"in CallVirtualMethod\n"); #endif // Because of the MIPS O32 calling conventions we could be passing // parameters in both register types and on the stack. To create the // stack parameter area we need we now simply allocate local // variable storage param[] that is at least the size of the parameter stack // (more than enough space) which we can overwrite the parameters into. /* p = sp - 512; new sp will be p - 16, but we don't change sp * at this time to avoid breaking ABI--not sure whether changing sp will break * references to local variables. For the same reason, we use abosulte value. */ __asm__ __volatile__ ( "addiu $2,$29,-512\n\t" "move %0,$2\n\t" :"=r"(p): : "$2","$29" ); #ifdef BRDEBUG if (nStackLongs * 4 > 512 ) fprintf(stderr,"too many arguments"); #endif // now begin to load the C++ function arguments into storage nw = 0; // now we need to parse the entire signature string */ // until we get the END indicator */ // treat complex return pointer like any other parameter // #ifdef BRDEBUG fprintf(stderr,"overflow area pointer p=%p\n",p); /* Let's figure out what is really going on here*/ fprintf(stderr,"callVirtualMethod parameters string is %s\n",pPT); int k = nStackLongs; long * q = (long *)pStackLongs; while (k > 0) { fprintf(stderr,"uno stack is: %x\n",(unsigned int)*q); k--; q++; } #endif /* parse the argument list up to the ending ) */ while (*pPT != 'X') { c = *pPT; switch (c) { case 'D': /* type is double */ /* treat the same as long long */ case 'H': /* type is long long */ if (nw & 1) nw++; /* note even elements gpr[] will map to odd registers*/ if (nw < 4) { gpr[nw++] = *pStackLongs; gpr[nw++] = *(pStackLongs+1); } else { if (((long) p) & 4) p++; *p++ = *pStackLongs; *p++ = *(pStackLongs+1); } pStackLongs += 2; break; case 'S': if (nw < 4) { gpr[nw++] = *((unsigned short*)pStackLongs); } else { *p++ = *((unsigned short *)pStackLongs); } pStackLongs += 1; break; case 'B': if (nw < 4) { gpr[nw++] = *((char *)pStackLongs); } else { *p++ = *((char *)pStackLongs); } pStackLongs += 1; break; default: if (nw < 4) { gpr[nw++] = *pStackLongs; } else { *p++ = *pStackLongs; } pStackLongs += 1; break; } pPT++; } /* figure out the address of the function we need to invoke */ off = nVtableIndex; off = off * 4; // 4 bytes per slot mfunc = *((unsigned long **)pAdjustedThisPtr); // get the address of the vtable mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset mfunc = *((unsigned long **)mfunc); // the function is stored at the address ptr = (void (*)())mfunc; #ifdef BRDEBUG fprintf(stderr,"calling function %p\n",mfunc); #endif /* Set up the machine registers and invoke the function */ __asm__ __volatile__ ( "lw $4, 0(%0)\n\t" "lw $5, 4(%0)\n\t" "lw $6, 8(%0)\n\t" "lw $7, 12(%0)\n\t" : : "r" (gpr) : "$4", "$5", "$6", "$7" ); __asm__ __volatile__ ("addiu $29,$29,-528\r\n":::"$29"); (*ptr)(); __asm__ __volatile__ ("addiu $29,$29,528\r\n":::"$29"); __asm__ __volatile__ ( "sw $2,%0 \n\t" "sw $3,%1 \n\t" : "=m" (iret), "=m" (iret2) : ); register float fret asm("$f0"); register double dret asm("$f0"); switch( eReturnType ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: ((long*)pRegisterReturn)[1] = iret2; // fall through case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: ((long*)pRegisterReturn)[0] = iret; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *(unsigned short*)pRegisterReturn = (unsigned short)iret; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *(unsigned char*)pRegisterReturn = (unsigned char)iret; break; case typelib_TypeClass_FLOAT: *(float*)pRegisterReturn = fret; break; case typelib_TypeClass_DOUBLE: *(double*)pRegisterReturn = dret; break; default: break; } } //================================================================================================== static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // max space for: [complex ret ptr], values|ptr ... char * pCppStack = (char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ); char * pCppStackStart = pCppStack; // need to know parameter types for callVirtualMethod so generate a signature string char * pParamType = (char *) alloca(nParams+2); char * pPT = pParamType; #ifdef BRDEBUG fprintf(stderr,"in cpp_call\n"); #endif // return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); // OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" ); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion if (pReturnTypeDescr) { if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr )) { pCppReturn = pUnoReturn; // direct way for simple types } else { // complex return via ptr pCppReturn = *(void **)pCppStack = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ): pUnoReturn); // direct way *pPT++ = 'I'; //signify that a complex return type on stack pCppStack += sizeof(void *); } } // push this void* pAdjustedThisPtr = reinterpret_cast< void **>(pThis->getCppI()) + aVtableSlot.offset; *(void**)pCppStack = pAdjustedThisPtr; pCppStack += sizeof( void* ); *pPT++ = 'I'; // stack space // OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" ); // args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndizes = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { // we need to know type of each param so that we know whether to use // gpr or fpr to pass in parameters: // Key: I - int, long, pointer, etc means pass in gpr // B - byte value passed in gpr // S - short value passed in gpr // F - float value pass in fpr // D - double value pass in fpr // H - long long int pass in proper pairs of gpr (3,4) (5,6), etc // X - indicates end of parameter description string case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *pPT++ = 'I'; break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: *pPT++ = 'S'; break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *pPT++ = 'B'; break; case typelib_TypeClass_FLOAT: *pPT++ = 'F'; break; case typelib_TypeClass_DOUBLE: *pPT++ = 'D'; pCppStack += sizeof(sal_Int32); // extra long break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: *pPT++ = 'H'; pCppStack += sizeof(sal_Int32); // extra long break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { *(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // KBH: FIXME: is this the right way to pass these *pPT++='I'; } pCppStack += sizeof(sal_Int32); // standard parameter length } // terminate the signature string *pPT++='X'; *pPT=0; try { OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" ); callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeDescr->eTypeClass, pParamType, (sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) ); // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } } namespace bridges { namespace cpp_uno { namespace shared { //================================================================================================== void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI); //typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; #ifdef BRDEBUG fprintf(stderr,"in dispatch\n"); #endif switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") ); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call( pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = ::getCppuType( &aExc ); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } }}}