/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_bridges.hxx" #include #include #include #include #include #include "rtl/alloc.h" #include "rtl/ustrbuf.hxx" #include #include "com/sun/star/uno/RuntimeException.hpp" #include #include #include #include "bridges/cpp_uno/shared/unointerfaceproxy.hxx" #include "bridges/cpp_uno/shared/vtables.hxx" #include "abi.hxx" #include "share.hxx" using namespace ::rtl; using namespace ::com::sun::star::uno; //================================================================================================== static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescriptionReference * pReturnTypeRef, bool bSimpleReturn, sal_uInt64 *pStack, sal_uInt32 nStack, sal_uInt64 *pGPR, sal_uInt32 nGPR, double *pFPR, sal_uInt32 nFPR) __attribute__((noinline)); static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex, void * pRegisterReturn, typelib_TypeDescriptionReference * pReturnTypeRef, bool bSimpleReturn, sal_uInt64 *pStack, sal_uInt32 nStack, sal_uInt64 *pGPR, sal_uInt32 nGPR, double *pFPR, sal_uInt32 nFPR) { #if OSL_DEBUG_LEVEL > 1 // Let's figure out what is really going on here { fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR ); for ( unsigned int i = 0; i < nGPR; ++i ) fprintf( stderr, "0x%lx, ", pGPR[i] ); fprintf( stderr, "\nFPR's (%d): ", nFPR ); for ( unsigned int i = 0; i < nFPR; ++i ) fprintf( stderr, "%f, ", pFPR[i] ); fprintf( stderr, "\nStack (%d): ", nStack ); for ( unsigned int i = 0; i < nStack; ++i ) fprintf( stderr, "0x%lx, ", pStack[i] ); fprintf( stderr, "\n" ); } #endif // The call instruction within the asm section of callVirtualMethod may throw // exceptions. So that the compiler handles this correctly, it is important // that (a) callVirtualMethod might call dummy_can_throw_anything (although this // never happens at runtime), which in turn can throw exceptions, and (b) // callVirtualMethod is not inlined at its call site (so that any exceptions are // caught which are thrown from the instruction calling callVirtualMethod): if ( !pThis ) CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything( "xxx" ); // address something // Should not happen, but... if ( nFPR > x86_64::MAX_SSE_REGS ) nFPR = x86_64::MAX_SSE_REGS; if ( nGPR > x86_64::MAX_GPR_REGS ) nGPR = x86_64::MAX_GPR_REGS; // Get pointer to method sal_uInt64 pMethod = *((sal_uInt64 *)pThis); pMethod += 8 * nVtableIndex; pMethod = *((sal_uInt64 *)pMethod); // Load parameters to stack, if necessary sal_uInt64* pCallStack = NULL; if ( nStack ) { // 16-bytes aligned sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 16; pCallStack = (sal_uInt64*) __builtin_alloca( nStackBytes ); memcpy( pCallStack, pStack, nStackBytes ); } // Return values sal_uInt64 rax; sal_uInt64 rdx; double xmm0; double xmm1; asm volatile ( // Fill the xmm registers "movq %2, %%rax\n\t" "movsd (%%rax), %%xmm0\n\t" "movsd 8(%%rax), %%xmm1\n\t" "movsd 16(%%rax), %%xmm2\n\t" "movsd 24(%%rax), %%xmm3\n\t" "movsd 32(%%rax), %%xmm4\n\t" "movsd 40(%%rax), %%xmm5\n\t" "movsd 48(%%rax), %%xmm6\n\t" "movsd 56(%%rax), %%xmm7\n\t" // Fill the general purpose registers "movq %1, %%rax\n\t" "movq (%%rax), %%rdi\n\t" "movq 8(%%rax), %%rsi\n\t" "movq 16(%%rax), %%rdx\n\t" "movq 24(%%rax), %%rcx\n\t" "movq 32(%%rax), %%r8\n\t" "movq 40(%%rax), %%r9\n\t" // Perform the call "movq %0, %%r11\n\t" "movq %3, %%rax\n\t" "call *%%r11\n\t" // Fill the return values "movq %%rax, %4\n\t" "movq %%rdx, %5\n\t" "movsd %%xmm0, %6\n\t" "movsd %%xmm1, %7\n\t" : : "m" ( pMethod ), "m" ( pGPR ), "m" ( pFPR ), "m" ( nFPR ), "m" ( rax ), "m" ( rdx ), "m" ( xmm0 ), "m" ( xmm1 ), "m" (pCallStack) // dummy input to prevent the compiler from optimizing the alloca out : "rax", "rdi", "rsi", "rdx", "rcx", "r8", "r9", "r11", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" ); switch (pReturnTypeRef->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: *reinterpret_cast( pRegisterReturn ) = rax; break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: *reinterpret_cast( pRegisterReturn ) = *reinterpret_cast( &rax ); break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: *reinterpret_cast( pRegisterReturn ) = *reinterpret_cast( &rax ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *reinterpret_cast( pRegisterReturn ) = *reinterpret_cast( &rax ); break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: *reinterpret_cast( pRegisterReturn ) = xmm0; break; default: { sal_Int32 const nRetSize = pReturnTypeRef->pType->nSize; if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0) { sal_uInt64 longs[2]; longs[0] = rax; longs[1] = rdx; double doubles[2]; doubles[0] = xmm0; doubles[1] = xmm1; x86_64::fill_struct( pReturnTypeRef, &longs[0], &doubles[0], pRegisterReturn); } break; } } } //================================================================================================== // Macros for easier insertion of values to registers or stack // pSV - pointer to the source // nr - order of the value [will be increased if stored to register] // pFPR, pGPR - pointer to the registers // pDS - pointer to the stack [will be increased if stored here] // The value in %xmm register is already prepared to be retrieved as a float, // thus we treat float and double the same #define INSERT_FLOAT_DOUBLE( pSV, nr, pFPR, pDS ) \ if ( nr < x86_64::MAX_SSE_REGS ) \ pFPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); // verbatim! #define INSERT_INT64( pSV, nr, pGPR, pDS ) \ if ( nr < x86_64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT32( pSV, nr, pGPR, pDS ) \ if ( nr < x86_64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT16( pSV, nr, pGPR, pDS ) \ if ( nr < x86_64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); #define INSERT_INT8( pSV, nr, pGPR, pDS ) \ if ( nr < x86_64::MAX_GPR_REGS ) \ pGPR[nr++] = *reinterpret_cast( pSV ); \ else \ *pDS++ = *reinterpret_cast( pSV ); //================================================================================================== namespace { void appendCString(OUStringBuffer & buffer, char const * text) { if (text != 0) { buffer.append( OStringToOUString(OString(text), RTL_TEXTENCODING_ISO_8859_1)); // use 8859-1 to avoid conversion failure } } } static void cpp_call( bridges::cpp_uno::shared::UnoInterfaceProxy * pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference * pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter * pParams, void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc ) { // Maxium space for [complex ret ptr], values | ptr ... // (but will be used less - some of the values will be in pGPR and pFPR) sal_uInt64 *pStack = (sal_uInt64 *)__builtin_alloca( (nParams + 3) * sizeof(sal_uInt64) ); sal_uInt64 *pStackStart = pStack; sal_uInt64 pGPR[x86_64::MAX_GPR_REGS]; sal_uInt32 nGPR = 0; double pFPR[x86_64::MAX_SSE_REGS]; sal_uInt32 nFPR = 0; // Return typelib_TypeDescription * pReturnTypeDescr = 0; TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" ); void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion (see below) bool bSimpleReturn = true; if ( pReturnTypeDescr ) { if ( x86_64::return_in_hidden_param( pReturnTypeRef ) ) bSimpleReturn = false; if ( bSimpleReturn ) pCppReturn = pUnoReturn; // direct way for simple types else { // complex return via ptr pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )? __builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn; INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack ); } } // Push "this" pointer void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset; INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack ); // Args void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams ); // Indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams); // Type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndizes = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_SHORT: case typelib_TypeClass_CHAR: case typelib_TypeClass_UNSIGNED_SHORT: INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack ); break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: INSERT_FLOAT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, pStack ); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { if (! rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pParamTypeDescr ); pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr )) { uno_copyAndConvertData( pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack ); } } try { try { callVirtualMethod( pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeRef, bSimpleReturn, pStackStart, ( pStack - pStackStart ), pGPR, nGPR, pFPR, nFPR ); } catch (Exception &) { throw; } catch (std::exception & e) { OUStringBuffer buf; buf.appendAscii(RTL_CONSTASCII_STRINGPARAM("C++ code threw ")); appendCString(buf, typeid(e).name()); buf.appendAscii(RTL_CONSTASCII_STRINGPARAM(": ")); appendCString(buf, e.what()); throw RuntimeException( buf.makeStringAndClear(), Reference< XInterface >()); } catch (...) { throw RuntimeException( OUString( RTL_CONSTASCII_USTRINGPARAM( "C++ code threw unknown exception")), Reference< XInterface >()); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } } else // pure out { uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno() ); } // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno() ); uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release ); } } catch (...) { // fill uno exception fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() ); // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; // destroy temp cpp param => cpp: every param was constructed uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); } } //================================================================================================== namespace bridges { namespace cpp_uno { namespace shared { void unoInterfaceProxyDispatch( uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr, void * pReturn, void * pArgs[], uno_Any ** ppException ) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy * pThis = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI); #if OSL_DEBUG_LEVEL > 0 typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; #endif switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { #if OSL_DEBUG_LEVEL > 0 // determine vtable call index sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition; OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" ); #endif VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceAttributeTypeDescription const * >( pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException ); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference * pReturnTypeRef = 0; OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") ); typelib_typedescriptionreference_new( &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData ); // dependent dispatch aVtableSlot.index += 1; // get, then set method cpp_call( pThis, aVtableSlot, // get, then set method pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException ); typelib_typedescriptionreference_release( pReturnTypeRef ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { #if OSL_DEBUG_LEVEL > 0 // determine vtable call index sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition; OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" ); #endif VtableSlot aVtableSlot( getVtableSlot( reinterpret_cast< typelib_InterfaceMethodTypeDescription const * >( pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)( pUnoI ); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)( pUnoI ); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() ); if (pTD) { uno_Interface * pInterface = 0; (*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)( pThis->getBridge()->getUnoEnv(), (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pReturn ), &pInterface, pTD, 0 ); (*pInterface->release)( pInterface ); TYPELIB_DANGER_RELEASE( pTD ); *ppException = 0; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams, pReturn, pArgs, ppException ); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ), ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() ); Type const & rExcType = ::getCppuType( &aExc ); // binary identical null reference ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 ); } } } } } }