/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_bridges.hxx" #include #include #include #include #include #include #include #include #include "share.hxx" using namespace ::osl; using namespace ::rtl; using namespace ::com::sun::star::uno; namespace CPPU_CURRENT_NAMESPACE { //================================================================================================== rtl_StandardModuleCount g_moduleCount = MODULE_COUNT_INIT; //================================================================================================== static typelib_TypeClass cpp2uno_call( cppu_cppInterfaceProxy * pThis, const typelib_TypeDescription * pMemberTypeDescr, typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return sal_Int32 nParams, typelib_MethodParameter * pParams, void ** pCallStack, sal_Int64 * pRegisterReturn /* space for register return */ ) { // pCallStack: ret, [return ptr], this, params char * pCppStack = (char *)(pCallStack +1); // return typelib_TypeDescription * pReturnTypeDescr = 0; if (pReturnTypeRef) TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); void * pUnoReturn = 0; void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need if (pReturnTypeDescr) { if (cppu_isSimpleType( pReturnTypeDescr )) { pUnoReturn = pRegisterReturn; // direct way for simple types } else // complex return via ptr (pCppReturn) { pCppReturn = *(void **)pCppStack; pCppStack += sizeof(void *); pUnoReturn = (cppu_relatesToInterface( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pCppReturn); // direct way } } // pop this pCppStack += sizeof( void* ); // stack space OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" ); // parameters void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams ); void ** pCppArgs = pUnoArgs + nParams; // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pUnoArgs + (2 * nParams)); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams)); sal_Int32 nTempIndizes = 0; for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && cppu_isSimpleType( pParamTypeDescr )) // value { pCppArgs[nPos] = pCppStack; pUnoArgs[nPos] = pCppStack; switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_DOUBLE: pCppStack += sizeof(sal_Int32); // extra long } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { pCppArgs[nPos] = *(void **)pCppStack; if (! rParam.bIn) // is pure out { // uno out is unconstructed mem! pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ); pTempIndizes[nTempIndizes] = nPos; // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (cppu_relatesToInterface( pParamTypeDescr )) { uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ), *(void **)pCppStack, pParamTypeDescr, &pThis->pBridge->aCpp2Uno ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { pUnoArgs[nPos] = *(void **)pCppStack; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } } pCppStack += sizeof(sal_Int32); // standard parameter length } // ExceptionHolder uno_Any aUnoExc; // Any will be constructed by callee uno_Any * pUnoExc = &aUnoExc; // invoke uno dispatch call (*pThis->pUnoI->pDispatcher)( pThis->pUnoI, pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc ); // in case an exception occurred... if (pUnoExc) { // destruct temporary in/inout params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; if (pParams[nIndex].bIn) // is in/inout => was constructed uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], 0 ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); raiseException( &aUnoExc, &pThis->pBridge->aUno2Cpp ); // has to destruct the any // is here for dummy return typelib_TypeClass_VOID; } else // else no exception occurred... { // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bOut) // inout/out { // convert and assign uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr, &pThis->pBridge->aUno2Cpp ); } // destroy temp uno param uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return if (pCppReturn) // has complex return { if (pUnoReturn != pCppReturn) // needs reconversion { uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr, &pThis->pBridge->aUno2Cpp ); // destroy temp uno return uno_destructData( pUnoReturn, pReturnTypeDescr, 0 ); } // complex return ptr is set to eax *(void **)pRegisterReturn = pCppReturn; } if (pReturnTypeDescr) { typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass; TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); return eRet; } else return typelib_TypeClass_VOID; } } //================================================================================================== static typelib_TypeClass cpp_mediate( sal_Int32 nVtableCall, void ** pCallStack, sal_Int64 * pRegisterReturn /* space for register return */ ) { OSL_ENSURE( sizeof(sal_Int32)==sizeof(void *), "### unexpected!" ); // pCallStack: ret adr, [ret *], this, params // _this_ ptr is patched cppu_XInterfaceProxy object cppu_cppInterfaceProxy * pCppI = NULL; if( nVtableCall & 0x80000000 ) { nVtableCall &= 0x7fffffff; pCppI = (cppu_cppInterfaceProxy *)(XInterface *)*(pCallStack +2); } else { pCppI = (cppu_cppInterfaceProxy *)(XInterface *)*(pCallStack +1); } typelib_InterfaceTypeDescription * pTypeDescr = pCppI->pTypeDescr; OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" ); if (nVtableCall >= pTypeDescr->nMapFunctionIndexToMemberIndex) { throw RuntimeException( OUString::createFromAscii("illegal vtable index!"), (XInterface *)pCppI ); } // determine called method OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" ); sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nVtableCall]; OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### illegal member index!" ); TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] ); typelib_TypeClass eRet; switch (aMemberDescr.get()->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nVtableCall) { // is GET method eRet = cpp2uno_call( pCppI, aMemberDescr.get(), ((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef, 0, 0, // no params pCallStack, pRegisterReturn ); } else { // is SET method typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; eRet = cpp2uno_call( pCppI, aMemberDescr.get(), 0, // indicates void return 1, &aParam, pCallStack, pRegisterReturn ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { // is METHOD switch (nVtableCall) { case 1: // acquire() pCppI->acquireProxy(); // non virtual call! eRet = typelib_TypeClass_VOID; break; case 2: // release() pCppI->releaseProxy(); // non virtual call! eRet = typelib_TypeClass_VOID; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pCallStack[3] )->getTypeLibType() ); if (pTD) { XInterface * pInterface = 0; (*pCppI->pBridge->pCppEnv->getRegisteredInterface)( pCppI->pBridge->pCppEnv, (void **)&pInterface, pCppI->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( pCallStack[1] ), &pInterface, pTD, cpp_acquire ); pInterface->release(); TYPELIB_DANGER_RELEASE( pTD ); *(void **)pRegisterReturn = pCallStack[1]; eRet = typelib_TypeClass_ANY; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: eRet = cpp2uno_call( pCppI, aMemberDescr.get(), ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams, ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams, pCallStack, pRegisterReturn ); } break; } default: { throw RuntimeException( OUString::createFromAscii("no member description found!"), (XInterface *)pCppI ); // is here for dummy eRet = typelib_TypeClass_VOID; } } return eRet; } //================================================================================================== /** * is called on incoming vtable calls * (called by asm snippets) */ static void cpp_vtable_call( int nTableEntry, void** pCallStack ) __attribute__((regparm(2))); void cpp_vtable_call( int nTableEntry, void** pCallStack ) { volatile long nRegReturn[2]; typelib_TypeClass aType = cpp_mediate( nTableEntry, pCallStack, (sal_Int64*)nRegReturn ); switch( aType ) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: __asm__( "movl %1, %%edx\n\t" "movl %0, %%eax\n" : : "m"(nRegReturn[0]), "m"(nRegReturn[1]) ); break; case typelib_TypeClass_FLOAT: __asm__( "flds %0\n\t" "fstp %%st(0)\n\t" "flds %0\n" : : "m"(*(float *)nRegReturn) ); break; case typelib_TypeClass_DOUBLE: __asm__( "fldl %0\n\t" "fstp %%st(0)\n\t" "fldl %0\n" : : "m"(*(double *)nRegReturn) ); break; // case typelib_TypeClass_UNSIGNED_SHORT: // case typelib_TypeClass_SHORT: // __asm__( "movswl %0, %%eax\n" // : : "m"(nRegReturn) ); // break; default: __asm__( "movl %0, %%eax\n" : : "m"(nRegReturn[0]) ); break; } } //================================================================================================== class MediateClassData { typedef ::std::hash_map< OUString, void *, OUStringHash > t_classdata_map; t_classdata_map m_map; Mutex m_mutex; public: void const * get_vtable( typelib_InterfaceTypeDescription * pTD ) SAL_THROW( () ); inline MediateClassData() SAL_THROW( () ) {} ~MediateClassData() SAL_THROW( () ); }; //__________________________________________________________________________________________________ MediateClassData::~MediateClassData() SAL_THROW( () ) { OSL_TRACE( "> calling ~MediateClassData(): freeing mediate vtables." ); for ( t_classdata_map::const_iterator iPos( m_map.begin() ); iPos != m_map.end(); ++iPos ) { ::rtl_freeMemory( iPos->second ); } } //-------------------------------------------------------------------------------------------------- static inline void codeSnippet( char * code, sal_uInt32 vtable_pos, bool simple_ret_type ) SAL_THROW( () ) { if (! simple_ret_type) vtable_pos |= 0x80000000; OSL_ASSERT( sizeof (long) == 4 ); // mov $nPos, %eax *code++ = 0xb8; *(long *)code = vtable_pos; code += sizeof (long); // mov %esp, %edx *code++ = 0x89; *code++ = 0xe2; // jmp cpp_vtable_call *code++ = 0xe9; *(long *)code = ((char *)cpp_vtable_call) - code - sizeof (long); } //__________________________________________________________________________________________________ void const * MediateClassData::get_vtable( typelib_InterfaceTypeDescription * pTD ) SAL_THROW( () ) { void * buffer; // avoiding locked counts OUString const & unoName = *(OUString const *)&((typelib_TypeDescription *)pTD)->pTypeName; { MutexGuard aGuard( m_mutex ); t_classdata_map::const_iterator iFind( m_map.find( unoName ) ); if (iFind == m_map.end()) { // create new vtable sal_Int32 nSlots = pTD->nMapFunctionIndexToMemberIndex; buffer = ::rtl_allocateMemory( ((2+ nSlots) * sizeof (void *)) + (nSlots *20) ); ::std::pair< t_classdata_map::iterator, bool > insertion( m_map.insert( t_classdata_map::value_type( unoName, buffer ) ) ); OSL_ENSURE( insertion.second, "### inserting new vtable buffer failed?!" ); void ** slots = (void **)buffer; *slots++ = 0; *slots++ = 0; // rtti char * code = (char *)(slots + nSlots); sal_uInt32 vtable_pos = 0; sal_Int32 nAllMembers = pTD->nAllMembers; typelib_TypeDescriptionReference ** ppAllMembers = pTD->ppAllMembers; for ( sal_Int32 nPos = 0; nPos < nAllMembers; ++nPos ) { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, ppAllMembers[ nPos ] ); OSL_ASSERT( pTD ); if (typelib_TypeClass_INTERFACE_ATTRIBUTE == pTD->eTypeClass) { bool simple_ret = cppu_isSimpleType( ((typelib_InterfaceAttributeTypeDescription *)pTD)->pAttributeTypeRef->eTypeClass ); // get method *slots++ = code; codeSnippet( code, vtable_pos++, simple_ret ); code += 20; if (! ((typelib_InterfaceAttributeTypeDescription *)pTD)->bReadOnly) { // set method *slots++ = code; codeSnippet( code, vtable_pos++, true ); code += 20; } } else { bool simple_ret = cppu_isSimpleType( ((typelib_InterfaceMethodTypeDescription *)pTD)->pReturnTypeRef->eTypeClass ); *slots++ = code; codeSnippet( code, vtable_pos++, simple_ret ); code += 20; } TYPELIB_DANGER_RELEASE( pTD ); } OSL_ASSERT( vtable_pos == nSlots ); } else { buffer = iFind->second; } } return ((void **)buffer +2); } //================================================================================================== void SAL_CALL cppu_cppInterfaceProxy_patchVtable( XInterface * pCppI, typelib_InterfaceTypeDescription * pTypeDescr ) throw () { static MediateClassData * s_pMediateClassData = 0; if (! s_pMediateClassData) { MutexGuard aGuard( Mutex::getGlobalMutex() ); if (! s_pMediateClassData) { #ifdef LEAK_STATIC_DATA s_pMediateClassData = new MediateClassData(); #else static MediateClassData s_aMediateClassData; s_pMediateClassData = &s_aMediateClassData; #endif } } *(void const **)pCppI = s_pMediateClassData->get_vtable( pTypeDescr ); } } extern "C" { //################################################################################################## sal_Bool SAL_CALL component_canUnload( TimeValue * pTime ) SAL_THROW_EXTERN_C() { return CPPU_CURRENT_NAMESPACE::g_moduleCount.canUnload( &CPPU_CURRENT_NAMESPACE::g_moduleCount, pTime ); } //################################################################################################## void SAL_CALL uno_initEnvironment( uno_Environment * pCppEnv ) SAL_THROW_EXTERN_C() { CPPU_CURRENT_NAMESPACE::cppu_cppenv_initEnvironment( pCppEnv ); } //################################################################################################## void SAL_CALL uno_ext_getMapping( uno_Mapping ** ppMapping, uno_Environment * pFrom, uno_Environment * pTo ) SAL_THROW_EXTERN_C() { CPPU_CURRENT_NAMESPACE::cppu_ext_getMapping( ppMapping, pFrom, pTo ); } }