1*09dbbe93SAndrew Rist /**************************************************************
2cdf0e10cSrcweir  *
3*09dbbe93SAndrew Rist  * Licensed to the Apache Software Foundation (ASF) under one
4*09dbbe93SAndrew Rist  * or more contributor license agreements.  See the NOTICE file
5*09dbbe93SAndrew Rist  * distributed with this work for additional information
6*09dbbe93SAndrew Rist  * regarding copyright ownership.  The ASF licenses this file
7*09dbbe93SAndrew Rist  * to you under the Apache License, Version 2.0 (the
8*09dbbe93SAndrew Rist  * "License"); you may not use this file except in compliance
9*09dbbe93SAndrew Rist  * with the License.  You may obtain a copy of the License at
10*09dbbe93SAndrew Rist  *
11*09dbbe93SAndrew Rist  *   http://www.apache.org/licenses/LICENSE-2.0
12*09dbbe93SAndrew Rist  *
13*09dbbe93SAndrew Rist  * Unless required by applicable law or agreed to in writing,
14*09dbbe93SAndrew Rist  * software distributed under the License is distributed on an
15*09dbbe93SAndrew Rist  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16*09dbbe93SAndrew Rist  * KIND, either express or implied.  See the License for the
17*09dbbe93SAndrew Rist  * specific language governing permissions and limitations
18*09dbbe93SAndrew Rist  * under the License.
19*09dbbe93SAndrew Rist  *
20*09dbbe93SAndrew Rist  *************************************************************/
21*09dbbe93SAndrew Rist 
22*09dbbe93SAndrew Rist 
23cdf0e10cSrcweir 
24cdf0e10cSrcweir // MARKER(update_precomp.py): autogen include statement, do not remove
25cdf0e10cSrcweir #include "precompiled_basegfx.hxx"
26cdf0e10cSrcweir #include <basegfx/curve/b2dcubicbezier.hxx>
27cdf0e10cSrcweir #include <basegfx/vector/b2dvector.hxx>
28cdf0e10cSrcweir #include <basegfx/polygon/b2dpolygon.hxx>
29cdf0e10cSrcweir #include <basegfx/numeric/ftools.hxx>
30cdf0e10cSrcweir 
31cdf0e10cSrcweir #include <limits>
32cdf0e10cSrcweir 
33cdf0e10cSrcweir // #i37443#
34cdf0e10cSrcweir #define FACTOR_FOR_UNSHARPEN	(1.6)
35cdf0e10cSrcweir #ifdef DBG_UTIL
36cdf0e10cSrcweir static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN;
37cdf0e10cSrcweir #endif
38cdf0e10cSrcweir 
39cdf0e10cSrcweir //////////////////////////////////////////////////////////////////////////////
40cdf0e10cSrcweir 
41cdf0e10cSrcweir namespace basegfx
42cdf0e10cSrcweir {
43cdf0e10cSrcweir 	namespace
44cdf0e10cSrcweir 	{
ImpSubDivAngle(const B2DPoint & rfPA,const B2DPoint & rfEA,const B2DPoint & rfEB,const B2DPoint & rfPB,B2DPolygon & rTarget,double fAngleBound,bool bAllowUnsharpen,sal_uInt16 nMaxRecursionDepth)45cdf0e10cSrcweir 		void ImpSubDivAngle(
46cdf0e10cSrcweir 			const B2DPoint& rfPA,			// start point
47cdf0e10cSrcweir 			const B2DPoint& rfEA,			// edge on A
48cdf0e10cSrcweir 			const B2DPoint& rfEB,			// edge on B
49cdf0e10cSrcweir 			const B2DPoint& rfPB,			// end point
50cdf0e10cSrcweir 			B2DPolygon& rTarget,			// target polygon
51cdf0e10cSrcweir 			double fAngleBound,				// angle bound in [0.0 .. 2PI]
52cdf0e10cSrcweir 			bool bAllowUnsharpen,			// #i37443# allow the criteria to get unsharp in recursions
53cdf0e10cSrcweir 			sal_uInt16 nMaxRecursionDepth)	// endless loop protection
54cdf0e10cSrcweir 		{
55cdf0e10cSrcweir 			if(nMaxRecursionDepth)
56cdf0e10cSrcweir 			{
57cdf0e10cSrcweir 				// do angle test
58cdf0e10cSrcweir 				B2DVector aLeft(rfEA - rfPA);
59cdf0e10cSrcweir 				B2DVector aRight(rfEB - rfPB);
60cdf0e10cSrcweir 
61cdf0e10cSrcweir 				// #i72104#
62cdf0e10cSrcweir 				if(aLeft.equalZero())
63cdf0e10cSrcweir 				{
64cdf0e10cSrcweir 					aLeft = rfEB - rfPA;
65cdf0e10cSrcweir 				}
66cdf0e10cSrcweir 
67cdf0e10cSrcweir 				if(aRight.equalZero())
68cdf0e10cSrcweir 				{
69cdf0e10cSrcweir 					aRight = rfEA - rfPB;
70cdf0e10cSrcweir 				}
71cdf0e10cSrcweir 
72cdf0e10cSrcweir 				const double fCurrentAngle(aLeft.angle(aRight));
73cdf0e10cSrcweir 
74cdf0e10cSrcweir 				if(fabs(fCurrentAngle) > (F_PI - fAngleBound))
75cdf0e10cSrcweir 				{
76cdf0e10cSrcweir 					// end recursion
77cdf0e10cSrcweir 					nMaxRecursionDepth = 0;
78cdf0e10cSrcweir 				}
79cdf0e10cSrcweir 				else
80cdf0e10cSrcweir 				{
81cdf0e10cSrcweir 					if(bAllowUnsharpen)
82cdf0e10cSrcweir 					{
83cdf0e10cSrcweir 						// #i37443# unsharpen criteria
84cdf0e10cSrcweir #ifdef DBG_UTIL
85cdf0e10cSrcweir 						fAngleBound *= fMultFactUnsharpen;
86cdf0e10cSrcweir #else
87cdf0e10cSrcweir 						fAngleBound *= FACTOR_FOR_UNSHARPEN;
88cdf0e10cSrcweir #endif
89cdf0e10cSrcweir 					}
90cdf0e10cSrcweir 				}
91cdf0e10cSrcweir 			}
92cdf0e10cSrcweir 
93cdf0e10cSrcweir 			if(nMaxRecursionDepth)
94cdf0e10cSrcweir 			{
95cdf0e10cSrcweir 				// divide at 0.5
96cdf0e10cSrcweir 				const B2DPoint aS1L(average(rfPA, rfEA));
97cdf0e10cSrcweir 				const B2DPoint aS1C(average(rfEA, rfEB));
98cdf0e10cSrcweir 				const B2DPoint aS1R(average(rfEB, rfPB));
99cdf0e10cSrcweir 				const B2DPoint aS2L(average(aS1L, aS1C));
100cdf0e10cSrcweir 				const B2DPoint aS2R(average(aS1C, aS1R));
101cdf0e10cSrcweir 				const B2DPoint aS3C(average(aS2L, aS2R));
102cdf0e10cSrcweir 
103cdf0e10cSrcweir 				// left recursion
104cdf0e10cSrcweir 				ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
105cdf0e10cSrcweir 
106cdf0e10cSrcweir 				// right recursion
107cdf0e10cSrcweir 				ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
108cdf0e10cSrcweir 			}
109cdf0e10cSrcweir 			else
110cdf0e10cSrcweir 			{
111cdf0e10cSrcweir 				rTarget.append(rfPB);
112cdf0e10cSrcweir 			}
113cdf0e10cSrcweir 		}
114cdf0e10cSrcweir 
ImpSubDivAngleStart(const B2DPoint & rfPA,const B2DPoint & rfEA,const B2DPoint & rfEB,const B2DPoint & rfPB,B2DPolygon & rTarget,const double & rfAngleBound,bool bAllowUnsharpen)115cdf0e10cSrcweir 		void ImpSubDivAngleStart(
116cdf0e10cSrcweir 			const B2DPoint& rfPA,			// start point
117cdf0e10cSrcweir 			const B2DPoint& rfEA,			// edge on A
118cdf0e10cSrcweir 			const B2DPoint& rfEB,			// edge on B
119cdf0e10cSrcweir 			const B2DPoint& rfPB,			// end point
120cdf0e10cSrcweir 			B2DPolygon& rTarget,			// target polygon
121cdf0e10cSrcweir 			const double& rfAngleBound,		// angle bound in [0.0 .. 2PI]
122cdf0e10cSrcweir 			bool bAllowUnsharpen)			// #i37443# allow the criteria to get unsharp in recursions
123cdf0e10cSrcweir 		{
124cdf0e10cSrcweir 			sal_uInt16 nMaxRecursionDepth(8);
125cdf0e10cSrcweir 			const B2DVector aLeft(rfEA - rfPA);
126cdf0e10cSrcweir 			const B2DVector aRight(rfEB - rfPB);
127cdf0e10cSrcweir 			bool bLeftEqualZero(aLeft.equalZero());
128cdf0e10cSrcweir 			bool bRightEqualZero(aRight.equalZero());
129cdf0e10cSrcweir 			bool bAllParallel(false);
130cdf0e10cSrcweir 
131cdf0e10cSrcweir 			if(bLeftEqualZero && bRightEqualZero)
132cdf0e10cSrcweir 			{
133cdf0e10cSrcweir 				nMaxRecursionDepth = 0;
134cdf0e10cSrcweir 			}
135cdf0e10cSrcweir 			else
136cdf0e10cSrcweir 			{
137cdf0e10cSrcweir 				const B2DVector aBase(rfPB - rfPA);
138cdf0e10cSrcweir 				const bool bBaseEqualZero(aBase.equalZero()); // #i72104#
139cdf0e10cSrcweir 
140cdf0e10cSrcweir 				if(!bBaseEqualZero)
141cdf0e10cSrcweir 				{
142cdf0e10cSrcweir 					const bool bLeftParallel(bLeftEqualZero ? true : areParallel(aLeft, aBase));
143cdf0e10cSrcweir 					const bool bRightParallel(bRightEqualZero ? true : areParallel(aRight, aBase));
144cdf0e10cSrcweir 
145cdf0e10cSrcweir 					if(bLeftParallel && bRightParallel)
146cdf0e10cSrcweir 					{
147cdf0e10cSrcweir 						bAllParallel = true;
148cdf0e10cSrcweir 
149cdf0e10cSrcweir 						if(!bLeftEqualZero)
150cdf0e10cSrcweir 						{
151cdf0e10cSrcweir 							double fFactor;
152cdf0e10cSrcweir 
153cdf0e10cSrcweir 							if(fabs(aBase.getX()) > fabs(aBase.getY()))
154cdf0e10cSrcweir 							{
155cdf0e10cSrcweir 								fFactor = aLeft.getX() / aBase.getX();
156cdf0e10cSrcweir 							}
157cdf0e10cSrcweir 							else
158cdf0e10cSrcweir 							{
159cdf0e10cSrcweir 								fFactor = aLeft.getY() / aBase.getY();
160cdf0e10cSrcweir 							}
161cdf0e10cSrcweir 
162cdf0e10cSrcweir 							if(fFactor >= 0.0 && fFactor <= 1.0)
163cdf0e10cSrcweir 							{
164cdf0e10cSrcweir 								bLeftEqualZero = true;
165cdf0e10cSrcweir 							}
166cdf0e10cSrcweir 						}
167cdf0e10cSrcweir 
168cdf0e10cSrcweir 						if(!bRightEqualZero)
169cdf0e10cSrcweir 						{
170cdf0e10cSrcweir 							double fFactor;
171cdf0e10cSrcweir 
172cdf0e10cSrcweir 							if(fabs(aBase.getX()) > fabs(aBase.getY()))
173cdf0e10cSrcweir 							{
174cdf0e10cSrcweir 								fFactor = aRight.getX() / -aBase.getX();
175cdf0e10cSrcweir 							}
176cdf0e10cSrcweir 							else
177cdf0e10cSrcweir 							{
178cdf0e10cSrcweir 								fFactor = aRight.getY() / -aBase.getY();
179cdf0e10cSrcweir 							}
180cdf0e10cSrcweir 
181cdf0e10cSrcweir 							if(fFactor >= 0.0 && fFactor <= 1.0)
182cdf0e10cSrcweir 							{
183cdf0e10cSrcweir 								bRightEqualZero = true;
184cdf0e10cSrcweir 							}
185cdf0e10cSrcweir 						}
186cdf0e10cSrcweir 
187cdf0e10cSrcweir 						if(bLeftEqualZero && bRightEqualZero)
188cdf0e10cSrcweir 						{
189cdf0e10cSrcweir 							nMaxRecursionDepth = 0;
190cdf0e10cSrcweir 						}
191cdf0e10cSrcweir 					}
192cdf0e10cSrcweir 				}
193cdf0e10cSrcweir 			}
194cdf0e10cSrcweir 
195cdf0e10cSrcweir 			if(nMaxRecursionDepth)
196cdf0e10cSrcweir 			{
197cdf0e10cSrcweir 				// divide at 0.5 ad test both edges for angle criteria
198cdf0e10cSrcweir 				const B2DPoint aS1L(average(rfPA, rfEA));
199cdf0e10cSrcweir 				const B2DPoint aS1C(average(rfEA, rfEB));
200cdf0e10cSrcweir 				const B2DPoint aS1R(average(rfEB, rfPB));
201cdf0e10cSrcweir 				const B2DPoint aS2L(average(aS1L, aS1C));
202cdf0e10cSrcweir 				const B2DPoint aS2R(average(aS1C, aS1R));
203cdf0e10cSrcweir 				const B2DPoint aS3C(average(aS2L, aS2R));
204cdf0e10cSrcweir 
205cdf0e10cSrcweir 				// test left
206cdf0e10cSrcweir 				bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero);
207cdf0e10cSrcweir 				if(!bAngleIsSmallerLeft)
208cdf0e10cSrcweir 				{
209cdf0e10cSrcweir 					const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104#
210cdf0e10cSrcweir 					const B2DVector aRightLeft(aS2L - aS3C);
211cdf0e10cSrcweir 					const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft));
212cdf0e10cSrcweir 					bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound));
213cdf0e10cSrcweir 				}
214cdf0e10cSrcweir 
215cdf0e10cSrcweir 				// test right
216cdf0e10cSrcweir 				bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero);
217cdf0e10cSrcweir 				if(!bAngleIsSmallerRight)
218cdf0e10cSrcweir 				{
219cdf0e10cSrcweir 					const B2DVector aLeftRight(aS2R - aS3C);
220cdf0e10cSrcweir 					const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104#
221cdf0e10cSrcweir 					const double fCurrentAngleRight(aLeftRight.angle(aRightRight));
222cdf0e10cSrcweir 					bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound));
223cdf0e10cSrcweir 				}
224cdf0e10cSrcweir 
225cdf0e10cSrcweir 				if(bAngleIsSmallerLeft && bAngleIsSmallerRight)
226cdf0e10cSrcweir 				{
227cdf0e10cSrcweir 					// no recursion necessary at all
228cdf0e10cSrcweir 					nMaxRecursionDepth = 0;
229cdf0e10cSrcweir 				}
230cdf0e10cSrcweir 				else
231cdf0e10cSrcweir 				{
232cdf0e10cSrcweir 					// left
233cdf0e10cSrcweir 					if(bAngleIsSmallerLeft)
234cdf0e10cSrcweir 					{
235cdf0e10cSrcweir 						rTarget.append(aS3C);
236cdf0e10cSrcweir 					}
237cdf0e10cSrcweir 					else
238cdf0e10cSrcweir 					{
239cdf0e10cSrcweir 						ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
240cdf0e10cSrcweir 					}
241cdf0e10cSrcweir 
242cdf0e10cSrcweir 					// right
243cdf0e10cSrcweir 					if(bAngleIsSmallerRight)
244cdf0e10cSrcweir 					{
245cdf0e10cSrcweir 						rTarget.append(rfPB);
246cdf0e10cSrcweir 					}
247cdf0e10cSrcweir 					else
248cdf0e10cSrcweir 					{
249cdf0e10cSrcweir 						ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
250cdf0e10cSrcweir 					}
251cdf0e10cSrcweir 				}
252cdf0e10cSrcweir 			}
253cdf0e10cSrcweir 
254cdf0e10cSrcweir 			if(!nMaxRecursionDepth)
255cdf0e10cSrcweir 			{
256cdf0e10cSrcweir 				rTarget.append(rfPB);
257cdf0e10cSrcweir 			}
258cdf0e10cSrcweir 		}
259cdf0e10cSrcweir 
ImpSubDivDistance(const B2DPoint & rfPA,const B2DPoint & rfEA,const B2DPoint & rfEB,const B2DPoint & rfPB,B2DPolygon & rTarget,double fDistanceBound2,double fLastDistanceError2,sal_uInt16 nMaxRecursionDepth)260cdf0e10cSrcweir 		void ImpSubDivDistance(
261cdf0e10cSrcweir 			const B2DPoint& rfPA,			// start point
262cdf0e10cSrcweir 			const B2DPoint& rfEA,			// edge on A
263cdf0e10cSrcweir 			const B2DPoint& rfEB,			// edge on B
264cdf0e10cSrcweir 			const B2DPoint& rfPB,			// end point
265cdf0e10cSrcweir 			B2DPolygon& rTarget,			// target polygon
266cdf0e10cSrcweir 			double fDistanceBound2,			// quadratic distance criteria
267cdf0e10cSrcweir 			double fLastDistanceError2,		// the last quadratic distance error
268cdf0e10cSrcweir 			sal_uInt16 nMaxRecursionDepth)	// endless loop protection
269cdf0e10cSrcweir 		{
270cdf0e10cSrcweir 			if(nMaxRecursionDepth)
271cdf0e10cSrcweir 			{
272cdf0e10cSrcweir 				// decide if another recursion is needed. If not, set
273cdf0e10cSrcweir 				// nMaxRecursionDepth to zero
274cdf0e10cSrcweir 
275cdf0e10cSrcweir 				// Perform bezier flatness test (lecture notes from R. Schaback,
276cdf0e10cSrcweir 				// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
277cdf0e10cSrcweir 				//
278cdf0e10cSrcweir 				// ||P(t) - L(t)|| <= max     ||b_j - b_0 - j/n(b_n - b_0)||
279cdf0e10cSrcweir 				//                    0<=j<=n
280cdf0e10cSrcweir 				//
281cdf0e10cSrcweir 				// What is calculated here is an upper bound to the distance from
282cdf0e10cSrcweir 				// a line through b_0 and b_3 (rfPA and P4 in our notation) and the
283cdf0e10cSrcweir 				// curve. We can drop 0 and n from the running indices, since the
284cdf0e10cSrcweir 				// argument of max becomes zero for those cases.
285cdf0e10cSrcweir 				const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX()));
286cdf0e10cSrcweir 				const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY()));
287cdf0e10cSrcweir 				const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX()));
288cdf0e10cSrcweir 				const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY()));
289cdf0e10cSrcweir 				const double fDistanceError2(::std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y));
290cdf0e10cSrcweir 
291cdf0e10cSrcweir 				// stop if error measure does not improve anymore. This is a
292cdf0e10cSrcweir 				// safety guard against floating point inaccuracies.
293cdf0e10cSrcweir 				// stop if distance from line is guaranteed to be bounded by d
294cdf0e10cSrcweir 				const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2);
295cdf0e10cSrcweir 
296cdf0e10cSrcweir 				if(bFurtherDivision)
297cdf0e10cSrcweir 				{
298cdf0e10cSrcweir 					// remember last error value
299cdf0e10cSrcweir 					fLastDistanceError2 = fDistanceError2;
300cdf0e10cSrcweir 				}
301cdf0e10cSrcweir 				else
302cdf0e10cSrcweir 				{
303cdf0e10cSrcweir 					// stop recustion
304cdf0e10cSrcweir 					nMaxRecursionDepth = 0;
305cdf0e10cSrcweir 				}
306cdf0e10cSrcweir 			}
307cdf0e10cSrcweir 
308cdf0e10cSrcweir 			if(nMaxRecursionDepth)
309cdf0e10cSrcweir 			{
310cdf0e10cSrcweir 				// divide at 0.5
311cdf0e10cSrcweir 				const B2DPoint aS1L(average(rfPA, rfEA));
312cdf0e10cSrcweir 				const B2DPoint aS1C(average(rfEA, rfEB));
313cdf0e10cSrcweir 				const B2DPoint aS1R(average(rfEB, rfPB));
314cdf0e10cSrcweir 				const B2DPoint aS2L(average(aS1L, aS1C));
315cdf0e10cSrcweir 				const B2DPoint aS2R(average(aS1C, aS1R));
316cdf0e10cSrcweir 				const B2DPoint aS3C(average(aS2L, aS2R));
317cdf0e10cSrcweir 
318cdf0e10cSrcweir 				// left recursion
319cdf0e10cSrcweir 				ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
320cdf0e10cSrcweir 
321cdf0e10cSrcweir 				// right recursion
322cdf0e10cSrcweir 				ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
323cdf0e10cSrcweir 			}
324cdf0e10cSrcweir 			else
325cdf0e10cSrcweir 			{
326cdf0e10cSrcweir 				rTarget.append(rfPB);
327cdf0e10cSrcweir 			}
328cdf0e10cSrcweir 		}
329cdf0e10cSrcweir 	} // end of anonymous namespace
330cdf0e10cSrcweir } // end of namespace basegfx
331cdf0e10cSrcweir 
332cdf0e10cSrcweir //////////////////////////////////////////////////////////////////////////////
333cdf0e10cSrcweir 
334cdf0e10cSrcweir namespace basegfx
335cdf0e10cSrcweir {
B2DCubicBezier(const B2DCubicBezier & rBezier)336cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier& rBezier)
337cdf0e10cSrcweir 	:	maStartPoint(rBezier.maStartPoint),
338cdf0e10cSrcweir 		maEndPoint(rBezier.maEndPoint),
339cdf0e10cSrcweir 		maControlPointA(rBezier.maControlPointA),
340cdf0e10cSrcweir 		maControlPointB(rBezier.maControlPointB)
341cdf0e10cSrcweir 	{
342cdf0e10cSrcweir 	}
343cdf0e10cSrcweir 
B2DCubicBezier()344cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier()
345cdf0e10cSrcweir 	{
346cdf0e10cSrcweir 	}
347cdf0e10cSrcweir 
B2DCubicBezier(const B2DPoint & rStart,const B2DPoint & rEnd)348cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rEnd)
349cdf0e10cSrcweir 	:	maStartPoint(rStart),
350cdf0e10cSrcweir 		maEndPoint(rEnd),
351cdf0e10cSrcweir 		maControlPointA(rStart),
352cdf0e10cSrcweir 		maControlPointB(rEnd)
353cdf0e10cSrcweir 	{
354cdf0e10cSrcweir 	}
355cdf0e10cSrcweir 
B2DCubicBezier(const B2DPoint & rStart,const B2DPoint & rControlPointA,const B2DPoint & rControlPointB,const B2DPoint & rEnd)356cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd)
357cdf0e10cSrcweir 	:	maStartPoint(rStart),
358cdf0e10cSrcweir 		maEndPoint(rEnd),
359cdf0e10cSrcweir 		maControlPointA(rControlPointA),
360cdf0e10cSrcweir 		maControlPointB(rControlPointB)
361cdf0e10cSrcweir 	{
362cdf0e10cSrcweir 	}
363cdf0e10cSrcweir 
~B2DCubicBezier()364cdf0e10cSrcweir 	B2DCubicBezier::~B2DCubicBezier()
365cdf0e10cSrcweir 	{
366cdf0e10cSrcweir 	}
367cdf0e10cSrcweir 
368cdf0e10cSrcweir 	// assignment operator
operator =(const B2DCubicBezier & rBezier)369cdf0e10cSrcweir 	B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier& rBezier)
370cdf0e10cSrcweir 	{
371cdf0e10cSrcweir 		maStartPoint = rBezier.maStartPoint;
372cdf0e10cSrcweir 		maEndPoint = rBezier.maEndPoint;
373cdf0e10cSrcweir 		maControlPointA = rBezier.maControlPointA;
374cdf0e10cSrcweir 		maControlPointB = rBezier.maControlPointB;
375cdf0e10cSrcweir 
376cdf0e10cSrcweir 		return *this;
377cdf0e10cSrcweir 	}
378cdf0e10cSrcweir 
379cdf0e10cSrcweir 	// compare operators
operator ==(const B2DCubicBezier & rBezier) const380cdf0e10cSrcweir 	bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const
381cdf0e10cSrcweir 	{
382cdf0e10cSrcweir 		return (
383cdf0e10cSrcweir 			maStartPoint == rBezier.maStartPoint
384cdf0e10cSrcweir 			&& maEndPoint == rBezier.maEndPoint
385cdf0e10cSrcweir 			&& maControlPointA == rBezier.maControlPointA
386cdf0e10cSrcweir 			&& maControlPointB == rBezier.maControlPointB
387cdf0e10cSrcweir 		);
388cdf0e10cSrcweir 	}
389cdf0e10cSrcweir 
operator !=(const B2DCubicBezier & rBezier) const390cdf0e10cSrcweir 	bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const
391cdf0e10cSrcweir 	{
392cdf0e10cSrcweir 		return (
393cdf0e10cSrcweir 			maStartPoint != rBezier.maStartPoint
394cdf0e10cSrcweir 			|| maEndPoint != rBezier.maEndPoint
395cdf0e10cSrcweir 			|| maControlPointA != rBezier.maControlPointA
396cdf0e10cSrcweir 			|| maControlPointB != rBezier.maControlPointB
397cdf0e10cSrcweir 		);
398cdf0e10cSrcweir 	}
399cdf0e10cSrcweir 
equal(const B2DCubicBezier & rBezier) const400cdf0e10cSrcweir     bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const
401cdf0e10cSrcweir     {
402cdf0e10cSrcweir 		return (
403cdf0e10cSrcweir 			maStartPoint.equal(rBezier.maStartPoint)
404cdf0e10cSrcweir 			&& maEndPoint.equal(rBezier.maEndPoint)
405cdf0e10cSrcweir 			&& maControlPointA.equal(rBezier.maControlPointA)
406cdf0e10cSrcweir 			&& maControlPointB.equal(rBezier.maControlPointB)
407cdf0e10cSrcweir 		);
408cdf0e10cSrcweir     }
409cdf0e10cSrcweir 
410cdf0e10cSrcweir 	// test if vectors are used
isBezier() const411cdf0e10cSrcweir 	bool B2DCubicBezier::isBezier() const
412cdf0e10cSrcweir 	{
413cdf0e10cSrcweir 		if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
414cdf0e10cSrcweir 		{
415cdf0e10cSrcweir 			return true;
416cdf0e10cSrcweir 		}
417cdf0e10cSrcweir 
418cdf0e10cSrcweir 		return false;
419cdf0e10cSrcweir 	}
420cdf0e10cSrcweir 
testAndSolveTrivialBezier()421cdf0e10cSrcweir 	void B2DCubicBezier::testAndSolveTrivialBezier()
422cdf0e10cSrcweir 	{
423cdf0e10cSrcweir 		if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
424cdf0e10cSrcweir 		{
425cdf0e10cSrcweir 			const B2DVector aEdge(maEndPoint - maStartPoint);
426cdf0e10cSrcweir 
427cdf0e10cSrcweir 			// controls parallel to edge can be trivial. No edge -> not parallel -> control can
428cdf0e10cSrcweir             // still not be trivial (e.g. ballon loop)
429cdf0e10cSrcweir 			if(!aEdge.equalZero())
430cdf0e10cSrcweir 			{
431cdf0e10cSrcweir                 // get control vectors
432cdf0e10cSrcweir 				const B2DVector aVecA(maControlPointA - maStartPoint);
433cdf0e10cSrcweir 				const B2DVector aVecB(maControlPointB - maEndPoint);
434cdf0e10cSrcweir 
435cdf0e10cSrcweir                 // check if trivial per se
436cdf0e10cSrcweir                 bool bAIsTrivial(aVecA.equalZero());
437cdf0e10cSrcweir                 bool bBIsTrivial(aVecB.equalZero());
438cdf0e10cSrcweir 
439cdf0e10cSrcweir                 // #i102241# prepare inverse edge length to normalize cross values;
440cdf0e10cSrcweir                 // else the small compare value used in fTools::equalZero
441cdf0e10cSrcweir                 // will be length dependent and this detection will work as less
442cdf0e10cSrcweir                 // precise as longer the edge is. In principle, the length of the control
443cdf0e10cSrcweir 				// vector would need to be used too, but to be trivial it is assumed to
444cdf0e10cSrcweir 				// be of roughly equal length to the edge, so edge length can be used
445cdf0e10cSrcweir 				// for both. Only needed when one of both is not trivial per se.
446cdf0e10cSrcweir                 const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial
447cdf0e10cSrcweir 					? 1.0
448cdf0e10cSrcweir 					: 1.0 / aEdge.getLength());
449cdf0e10cSrcweir 
450cdf0e10cSrcweir 				// if A is not zero, check if it could be
451cdf0e10cSrcweir 				if(!bAIsTrivial)
452cdf0e10cSrcweir 				{
453cdf0e10cSrcweir 					// #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what
454cdf0e10cSrcweir 					// we need here with the precision we need
455cdf0e10cSrcweir 					const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength);
456cdf0e10cSrcweir 
457cdf0e10cSrcweir 					if(fTools::equalZero(fCross))
458cdf0e10cSrcweir 					{
459cdf0e10cSrcweir 						// get scale to edge. Use bigger distance for numeric quality
460cdf0e10cSrcweir 						const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
461cdf0e10cSrcweir 							? aVecA.getX() / aEdge.getX()
462cdf0e10cSrcweir 							: aVecA.getY() / aEdge.getY());
463cdf0e10cSrcweir 
464cdf0e10cSrcweir 						// relative end point of vector in edge range?
465cdf0e10cSrcweir 						if(fTools::moreOrEqual(fScale, 0.0) && fTools::lessOrEqual(fScale, 1.0))
466cdf0e10cSrcweir 						{
467cdf0e10cSrcweir 							bAIsTrivial = true;
468cdf0e10cSrcweir 						}
469cdf0e10cSrcweir 					}
470cdf0e10cSrcweir 				}
471cdf0e10cSrcweir 
472cdf0e10cSrcweir                 // if B is not zero, check if it could be, but only if A is already trivial;
473cdf0e10cSrcweir                 // else solve to trivial will not be possible for whole edge
474cdf0e10cSrcweir 				if(bAIsTrivial && !bBIsTrivial)
475cdf0e10cSrcweir 				{
476cdf0e10cSrcweir 					// parallel to edge? Check aVecB, aEdge
477cdf0e10cSrcweir 					const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength);
478cdf0e10cSrcweir 
479cdf0e10cSrcweir 					if(fTools::equalZero(fCross))
480cdf0e10cSrcweir 					{
481cdf0e10cSrcweir 						// get scale to edge. Use bigger distance for numeric quality
482cdf0e10cSrcweir 						const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
483cdf0e10cSrcweir 							? aVecB.getX() / aEdge.getX()
484cdf0e10cSrcweir 							: aVecB.getY() / aEdge.getY());
485cdf0e10cSrcweir 
486cdf0e10cSrcweir 						// end point of vector in edge range? Caution: controlB is directed AGAINST edge
487cdf0e10cSrcweir 						if(fTools::lessOrEqual(fScale, 0.0) && fTools::moreOrEqual(fScale, -1.0))
488cdf0e10cSrcweir 						{
489cdf0e10cSrcweir 							bBIsTrivial = true;
490cdf0e10cSrcweir 						}
491cdf0e10cSrcweir 					}
492cdf0e10cSrcweir 				}
493cdf0e10cSrcweir 
494cdf0e10cSrcweir                 // if both are/can be reduced, do it.
495cdf0e10cSrcweir 				// Not possible if only one is/can be reduced (!)
496cdf0e10cSrcweir 				if(bAIsTrivial && bBIsTrivial)
497cdf0e10cSrcweir 				{
498cdf0e10cSrcweir 					maControlPointA = maStartPoint;
499cdf0e10cSrcweir 					maControlPointB = maEndPoint;
500cdf0e10cSrcweir 				}
501cdf0e10cSrcweir 			}
502cdf0e10cSrcweir 		}
503cdf0e10cSrcweir 	}
504cdf0e10cSrcweir 
505cdf0e10cSrcweir     namespace {
impGetLength(const B2DCubicBezier & rEdge,double fDeviation,sal_uInt32 nRecursionWatch)506cdf0e10cSrcweir         double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch)
507cdf0e10cSrcweir         {
508cdf0e10cSrcweir             const double fEdgeLength(rEdge.getEdgeLength());
509cdf0e10cSrcweir             const double fControlPolygonLength(rEdge.getControlPolygonLength());
510cdf0e10cSrcweir             const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength));
511cdf0e10cSrcweir 
512cdf0e10cSrcweir             if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation))
513cdf0e10cSrcweir             {
514cdf0e10cSrcweir                 return (fEdgeLength + fControlPolygonLength) * 0.5;
515cdf0e10cSrcweir             }
516cdf0e10cSrcweir             else
517cdf0e10cSrcweir             {
518cdf0e10cSrcweir                 B2DCubicBezier aLeft, aRight;
519cdf0e10cSrcweir                 const double fNewDeviation(fDeviation * 0.5);
520cdf0e10cSrcweir                 const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1);
521cdf0e10cSrcweir 
522cdf0e10cSrcweir                 rEdge.split(0.5, &aLeft, &aRight);
523cdf0e10cSrcweir 
524cdf0e10cSrcweir                 return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch)
525cdf0e10cSrcweir                     + impGetLength(aRight, fNewDeviation, nNewRecursionWatch);
526cdf0e10cSrcweir             }
527cdf0e10cSrcweir         }
528cdf0e10cSrcweir     }
529cdf0e10cSrcweir 
getLength(double fDeviation) const530cdf0e10cSrcweir 	double B2DCubicBezier::getLength(double fDeviation) const
531cdf0e10cSrcweir     {
532cdf0e10cSrcweir         if(isBezier())
533cdf0e10cSrcweir         {
534cdf0e10cSrcweir             if(fDeviation < 0.00000001)
535cdf0e10cSrcweir             {
536cdf0e10cSrcweir                 fDeviation = 0.00000001;
537cdf0e10cSrcweir             }
538cdf0e10cSrcweir 
539cdf0e10cSrcweir             return impGetLength(*this, fDeviation, 6);
540cdf0e10cSrcweir         }
541cdf0e10cSrcweir         else
542cdf0e10cSrcweir         {
543cdf0e10cSrcweir             return B2DVector(getEndPoint() - getStartPoint()).getLength();
544cdf0e10cSrcweir         }
545cdf0e10cSrcweir     }
546cdf0e10cSrcweir 
getEdgeLength() const547cdf0e10cSrcweir 	double B2DCubicBezier::getEdgeLength() const
548cdf0e10cSrcweir 	{
549cdf0e10cSrcweir 		const B2DVector aEdge(maEndPoint - maStartPoint);
550cdf0e10cSrcweir 		return aEdge.getLength();
551cdf0e10cSrcweir 	}
552cdf0e10cSrcweir 
getControlPolygonLength() const553cdf0e10cSrcweir 	double B2DCubicBezier::getControlPolygonLength() const
554cdf0e10cSrcweir 	{
555cdf0e10cSrcweir 		const B2DVector aVectorA(maControlPointA - maStartPoint);
556cdf0e10cSrcweir 		const B2DVector aVectorB(maEndPoint - maControlPointB);
557cdf0e10cSrcweir 
558cdf0e10cSrcweir 		if(!aVectorA.equalZero() || !aVectorB.equalZero())
559cdf0e10cSrcweir 		{
560cdf0e10cSrcweir 			const B2DVector aTop(maControlPointB - maControlPointA);
561cdf0e10cSrcweir 			return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength());
562cdf0e10cSrcweir 		}
563cdf0e10cSrcweir 		else
564cdf0e10cSrcweir 		{
565cdf0e10cSrcweir 			return getEdgeLength();
566cdf0e10cSrcweir 		}
567cdf0e10cSrcweir 	}
568cdf0e10cSrcweir 
adaptiveSubdivideByAngle(B2DPolygon & rTarget,double fAngleBound,bool bAllowUnsharpen) const569cdf0e10cSrcweir 	void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound, bool bAllowUnsharpen) const
570cdf0e10cSrcweir 	{
571cdf0e10cSrcweir 		if(isBezier())
572cdf0e10cSrcweir 		{
573cdf0e10cSrcweir 			// use support method #i37443# and allow unsharpen the criteria
574cdf0e10cSrcweir 			ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, fAngleBound * F_PI180, bAllowUnsharpen);
575cdf0e10cSrcweir 		}
576cdf0e10cSrcweir 		else
577cdf0e10cSrcweir 		{
578cdf0e10cSrcweir 			rTarget.append(getEndPoint());
579cdf0e10cSrcweir 		}
580cdf0e10cSrcweir 	}
581cdf0e10cSrcweir 
getTangent(double t) const582cdf0e10cSrcweir     B2DVector B2DCubicBezier::getTangent(double t) const
583cdf0e10cSrcweir     {
584cdf0e10cSrcweir         if(fTools::lessOrEqual(t, 0.0))
585cdf0e10cSrcweir         {
586cdf0e10cSrcweir             // tangent in start point
587cdf0e10cSrcweir             B2DVector aTangent(getControlPointA() - getStartPoint());
588cdf0e10cSrcweir 
589cdf0e10cSrcweir             if(!aTangent.equalZero())
590cdf0e10cSrcweir             {
591cdf0e10cSrcweir                 return aTangent;
592cdf0e10cSrcweir             }
593cdf0e10cSrcweir 
594cdf0e10cSrcweir             // start point and control vector are the same, fallback
595cdf0e10cSrcweir             // to implicit start vector to control point B
596cdf0e10cSrcweir             aTangent = (getControlPointB() - getStartPoint()) * 0.3;
597cdf0e10cSrcweir 
598cdf0e10cSrcweir             if(!aTangent.equalZero())
599cdf0e10cSrcweir             {
600cdf0e10cSrcweir                 return aTangent;
601cdf0e10cSrcweir             }
602cdf0e10cSrcweir 
603cdf0e10cSrcweir             // not a bezier at all, return edge vector
604cdf0e10cSrcweir             return (getEndPoint() - getStartPoint()) * 0.3;
605cdf0e10cSrcweir         }
606cdf0e10cSrcweir         else if(fTools::moreOrEqual(t, 1.0))
607cdf0e10cSrcweir         {
608cdf0e10cSrcweir             // tangent in end point
609cdf0e10cSrcweir             B2DVector aTangent(getEndPoint() - getControlPointB());
610cdf0e10cSrcweir 
611cdf0e10cSrcweir             if(!aTangent.equalZero())
612cdf0e10cSrcweir             {
613cdf0e10cSrcweir                 return aTangent;
614cdf0e10cSrcweir             }
615cdf0e10cSrcweir 
616cdf0e10cSrcweir             // end point and control vector are the same, fallback
617cdf0e10cSrcweir             // to implicit start vector from control point A
618cdf0e10cSrcweir             aTangent = (getEndPoint() - getControlPointA()) * 0.3;
619cdf0e10cSrcweir 
620cdf0e10cSrcweir             if(!aTangent.equalZero())
621cdf0e10cSrcweir             {
622cdf0e10cSrcweir                 return aTangent;
623cdf0e10cSrcweir             }
624cdf0e10cSrcweir 
625cdf0e10cSrcweir             // not a bezier at all, return edge vector
626cdf0e10cSrcweir             return (getEndPoint() - getStartPoint()) * 0.3;
627cdf0e10cSrcweir         }
628cdf0e10cSrcweir         else
629cdf0e10cSrcweir         {
630cdf0e10cSrcweir             // t is in ]0.0 .. 1.0[. Split and extract
631cdf0e10cSrcweir             B2DCubicBezier aRight;
632cdf0e10cSrcweir             split(t, 0, &aRight);
633cdf0e10cSrcweir 
634cdf0e10cSrcweir             return aRight.getControlPointA() - aRight.getStartPoint();
635cdf0e10cSrcweir         }
636cdf0e10cSrcweir     }
637cdf0e10cSrcweir 
638cdf0e10cSrcweir 	// #i37443# adaptive subdivide by nCount subdivisions
adaptiveSubdivideByCount(B2DPolygon & rTarget,sal_uInt32 nCount) const639cdf0e10cSrcweir 	void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const
640cdf0e10cSrcweir 	{
641cdf0e10cSrcweir 		const double fLenFact(1.0 / static_cast< double >(nCount + 1));
642cdf0e10cSrcweir 
643cdf0e10cSrcweir 		for(sal_uInt32 a(1); a <= nCount; a++)
644cdf0e10cSrcweir 		{
645cdf0e10cSrcweir 			const double fPos(static_cast< double >(a) * fLenFact);
646cdf0e10cSrcweir 			rTarget.append(interpolatePoint(fPos));
647cdf0e10cSrcweir 		}
648cdf0e10cSrcweir 
649cdf0e10cSrcweir 		rTarget.append(getEndPoint());
650cdf0e10cSrcweir 	}
651cdf0e10cSrcweir 
652cdf0e10cSrcweir 	// adaptive subdivide by distance
adaptiveSubdivideByDistance(B2DPolygon & rTarget,double fDistanceBound) const653cdf0e10cSrcweir 	void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const
654cdf0e10cSrcweir 	{
655cdf0e10cSrcweir 		if(isBezier())
656cdf0e10cSrcweir 		{
657cdf0e10cSrcweir 			ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget,
658cdf0e10cSrcweir 				fDistanceBound * fDistanceBound, ::std::numeric_limits<double>::max(), 30);
659cdf0e10cSrcweir 		}
660cdf0e10cSrcweir 		else
661cdf0e10cSrcweir 		{
662cdf0e10cSrcweir 			rTarget.append(getEndPoint());
663cdf0e10cSrcweir 		}
664cdf0e10cSrcweir 	}
665cdf0e10cSrcweir 
interpolatePoint(double t) const666cdf0e10cSrcweir 	B2DPoint B2DCubicBezier::interpolatePoint(double t) const
667cdf0e10cSrcweir 	{
668cdf0e10cSrcweir 		OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)");
669cdf0e10cSrcweir 
670cdf0e10cSrcweir 		if(isBezier())
671cdf0e10cSrcweir 		{
672cdf0e10cSrcweir 			const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
673cdf0e10cSrcweir 			const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
674cdf0e10cSrcweir 			const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
675cdf0e10cSrcweir 			const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
676cdf0e10cSrcweir 			const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
677cdf0e10cSrcweir 
678cdf0e10cSrcweir 			return interpolate(aS2L, aS2R, t);
679cdf0e10cSrcweir 		}
680cdf0e10cSrcweir 		else
681cdf0e10cSrcweir 		{
682cdf0e10cSrcweir 			return interpolate(maStartPoint, maEndPoint, t);
683cdf0e10cSrcweir 		}
684cdf0e10cSrcweir 	}
685cdf0e10cSrcweir 
getSmallestDistancePointToBezierSegment(const B2DPoint & rTestPoint,double & rCut) const686cdf0e10cSrcweir 	double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const
687cdf0e10cSrcweir 	{
688cdf0e10cSrcweir 		const sal_uInt32 nInitialDivisions(3L);
689cdf0e10cSrcweir 		B2DPolygon aInitialPolygon;
690cdf0e10cSrcweir 
691cdf0e10cSrcweir 		// as start make a fix division, creates nInitialDivisions + 2L points
692cdf0e10cSrcweir 		aInitialPolygon.append(getStartPoint());
693cdf0e10cSrcweir 		adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions);
694cdf0e10cSrcweir 
695cdf0e10cSrcweir 		// now look for the closest point
696cdf0e10cSrcweir 		const sal_uInt32 nPointCount(aInitialPolygon.count());
697cdf0e10cSrcweir 		B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0L));
698cdf0e10cSrcweir 		double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY());
699cdf0e10cSrcweir 		double fNewQuadDist;
700cdf0e10cSrcweir 		sal_uInt32 nSmallestIndex(0L);
701cdf0e10cSrcweir 
702cdf0e10cSrcweir 		for(sal_uInt32 a(1L); a < nPointCount; a++)
703cdf0e10cSrcweir 		{
704cdf0e10cSrcweir 			aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a));
705cdf0e10cSrcweir 			fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
706cdf0e10cSrcweir 
707cdf0e10cSrcweir 			if(fNewQuadDist < fQuadDist)
708cdf0e10cSrcweir 			{
709cdf0e10cSrcweir 				fQuadDist = fNewQuadDist;
710cdf0e10cSrcweir 				nSmallestIndex = a;
711cdf0e10cSrcweir 			}
712cdf0e10cSrcweir 		}
713cdf0e10cSrcweir 
714cdf0e10cSrcweir 		// look right and left for even smaller distances
715cdf0e10cSrcweir 		double fStepValue(1.0 / (double)((nPointCount - 1L) * 2L)); // half the edge step width
716cdf0e10cSrcweir 		double fPosition((double)nSmallestIndex / (double)(nPointCount - 1L));
717cdf0e10cSrcweir 		bool bDone(false);
718cdf0e10cSrcweir 
719cdf0e10cSrcweir 		while(!bDone)
720cdf0e10cSrcweir 		{
721cdf0e10cSrcweir 			if(!bDone)
722cdf0e10cSrcweir 			{
723cdf0e10cSrcweir 				// test left
724cdf0e10cSrcweir 				double fPosLeft(fPosition - fStepValue);
725cdf0e10cSrcweir 
726cdf0e10cSrcweir 				if(fPosLeft < 0.0)
727cdf0e10cSrcweir 				{
728cdf0e10cSrcweir 					fPosLeft = 0.0;
729cdf0e10cSrcweir 					aVector = B2DVector(rTestPoint - maStartPoint);
730cdf0e10cSrcweir 				}
731cdf0e10cSrcweir 				else
732cdf0e10cSrcweir 				{
733cdf0e10cSrcweir 					aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft));
734cdf0e10cSrcweir 				}
735cdf0e10cSrcweir 
736cdf0e10cSrcweir 				fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
737cdf0e10cSrcweir 
738cdf0e10cSrcweir 				if(fTools::less(fNewQuadDist, fQuadDist))
739cdf0e10cSrcweir 				{
740cdf0e10cSrcweir 					fQuadDist = fNewQuadDist;
741cdf0e10cSrcweir 					fPosition = fPosLeft;
742cdf0e10cSrcweir 				}
743cdf0e10cSrcweir 				else
744cdf0e10cSrcweir 				{
745cdf0e10cSrcweir 					// test right
746cdf0e10cSrcweir 					double fPosRight(fPosition + fStepValue);
747cdf0e10cSrcweir 
748cdf0e10cSrcweir 					if(fPosRight > 1.0)
749cdf0e10cSrcweir 					{
750cdf0e10cSrcweir 						fPosRight = 1.0;
751cdf0e10cSrcweir 						aVector = B2DVector(rTestPoint - maEndPoint);
752cdf0e10cSrcweir 					}
753cdf0e10cSrcweir 					else
754cdf0e10cSrcweir 					{
755cdf0e10cSrcweir 						aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight));
756cdf0e10cSrcweir 					}
757cdf0e10cSrcweir 
758cdf0e10cSrcweir 					fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
759cdf0e10cSrcweir 
760cdf0e10cSrcweir 					if(fTools::less(fNewQuadDist, fQuadDist))
761cdf0e10cSrcweir 					{
762cdf0e10cSrcweir 						fQuadDist = fNewQuadDist;
763cdf0e10cSrcweir 						fPosition = fPosRight;
764cdf0e10cSrcweir 					}
765cdf0e10cSrcweir 					else
766cdf0e10cSrcweir 					{
767cdf0e10cSrcweir 						// not less left or right, done
768cdf0e10cSrcweir 						bDone = true;
769cdf0e10cSrcweir 					}
770cdf0e10cSrcweir 				}
771cdf0e10cSrcweir 			}
772cdf0e10cSrcweir 
773cdf0e10cSrcweir 			if(0.0 == fPosition || 1.0 == fPosition)
774cdf0e10cSrcweir 			{
775cdf0e10cSrcweir 				// if we are completely left or right, we are done
776cdf0e10cSrcweir 				bDone = true;
777cdf0e10cSrcweir 			}
778cdf0e10cSrcweir 
779cdf0e10cSrcweir 			if(!bDone)
780cdf0e10cSrcweir 			{
781cdf0e10cSrcweir 				// prepare next step value
782cdf0e10cSrcweir 				fStepValue /= 2.0;
783cdf0e10cSrcweir 			}
784cdf0e10cSrcweir 		}
785cdf0e10cSrcweir 
786cdf0e10cSrcweir 		rCut = fPosition;
787cdf0e10cSrcweir 		return sqrt(fQuadDist);
788cdf0e10cSrcweir 	}
789cdf0e10cSrcweir 
split(double t,B2DCubicBezier * pBezierA,B2DCubicBezier * pBezierB) const790cdf0e10cSrcweir 	void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const
791cdf0e10cSrcweir 	{
792cdf0e10cSrcweir 		OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)");
793cdf0e10cSrcweir 
794cdf0e10cSrcweir 		if(!pBezierA && !pBezierB)
795cdf0e10cSrcweir 		{
796cdf0e10cSrcweir 			return;
797cdf0e10cSrcweir 		}
798cdf0e10cSrcweir 
799cdf0e10cSrcweir 		if(isBezier())
800cdf0e10cSrcweir 		{
801cdf0e10cSrcweir 			const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
802cdf0e10cSrcweir 			const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
803cdf0e10cSrcweir 			const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
804cdf0e10cSrcweir 			const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
805cdf0e10cSrcweir 			const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
806cdf0e10cSrcweir 			const B2DPoint aS3C(interpolate(aS2L, aS2R, t));
807cdf0e10cSrcweir 
808cdf0e10cSrcweir 			if(pBezierA)
809cdf0e10cSrcweir 			{
810cdf0e10cSrcweir 				pBezierA->setStartPoint(maStartPoint);
811cdf0e10cSrcweir 				pBezierA->setEndPoint(aS3C);
812cdf0e10cSrcweir 				pBezierA->setControlPointA(aS1L);
813cdf0e10cSrcweir 				pBezierA->setControlPointB(aS2L);
814cdf0e10cSrcweir 			}
815cdf0e10cSrcweir 
816cdf0e10cSrcweir 			if(pBezierB)
817cdf0e10cSrcweir 			{
818cdf0e10cSrcweir 				pBezierB->setStartPoint(aS3C);
819cdf0e10cSrcweir 				pBezierB->setEndPoint(maEndPoint);
820cdf0e10cSrcweir 				pBezierB->setControlPointA(aS2R);
821cdf0e10cSrcweir 				pBezierB->setControlPointB(aS1R);
822cdf0e10cSrcweir 			}
823cdf0e10cSrcweir 		}
824cdf0e10cSrcweir 		else
825cdf0e10cSrcweir 		{
826cdf0e10cSrcweir 			const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t));
827cdf0e10cSrcweir 
828cdf0e10cSrcweir 			if(pBezierA)
829cdf0e10cSrcweir 			{
830cdf0e10cSrcweir 				pBezierA->setStartPoint(maStartPoint);
831cdf0e10cSrcweir 				pBezierA->setEndPoint(aSplit);
832cdf0e10cSrcweir 				pBezierA->setControlPointA(maStartPoint);
833cdf0e10cSrcweir 				pBezierA->setControlPointB(aSplit);
834cdf0e10cSrcweir 			}
835cdf0e10cSrcweir 
836cdf0e10cSrcweir 			if(pBezierB)
837cdf0e10cSrcweir 			{
838cdf0e10cSrcweir 				pBezierB->setStartPoint(aSplit);
839cdf0e10cSrcweir 				pBezierB->setEndPoint(maEndPoint);
840cdf0e10cSrcweir 				pBezierB->setControlPointA(aSplit);
841cdf0e10cSrcweir 				pBezierB->setControlPointB(maEndPoint);
842cdf0e10cSrcweir 			}
843cdf0e10cSrcweir 		}
844cdf0e10cSrcweir 	}
845cdf0e10cSrcweir 
snippet(double fStart,double fEnd) const846cdf0e10cSrcweir 	B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const
847cdf0e10cSrcweir 	{
848cdf0e10cSrcweir 		B2DCubicBezier aRetval;
849cdf0e10cSrcweir 
850cdf0e10cSrcweir 		if(fTools::more(fStart, 1.0))
851cdf0e10cSrcweir 		{
852cdf0e10cSrcweir 			fStart = 1.0;
853cdf0e10cSrcweir 		}
854cdf0e10cSrcweir 		else if(fTools::less(fStart, 0.0))
855cdf0e10cSrcweir 		{
856cdf0e10cSrcweir 			fStart = 0.0;
857cdf0e10cSrcweir 		}
858cdf0e10cSrcweir 
859cdf0e10cSrcweir 		if(fTools::more(fEnd, 1.0))
860cdf0e10cSrcweir 		{
861cdf0e10cSrcweir 			fEnd = 1.0;
862cdf0e10cSrcweir 		}
863cdf0e10cSrcweir 		else if(fTools::less(fEnd, 0.0))
864cdf0e10cSrcweir 		{
865cdf0e10cSrcweir 			fEnd = 0.0;
866cdf0e10cSrcweir 		}
867cdf0e10cSrcweir 
868cdf0e10cSrcweir 		if(fEnd <= fStart)
869cdf0e10cSrcweir 		{
870cdf0e10cSrcweir 			// empty or NULL, create single point at center
871cdf0e10cSrcweir 			const double fSplit((fEnd + fStart) * 0.5);
872cdf0e10cSrcweir 			const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit));
873cdf0e10cSrcweir 			aRetval.setStartPoint(aPoint);
874cdf0e10cSrcweir 			aRetval.setEndPoint(aPoint);
875cdf0e10cSrcweir 			aRetval.setControlPointA(aPoint);
876cdf0e10cSrcweir 			aRetval.setControlPointB(aPoint);
877cdf0e10cSrcweir 		}
878cdf0e10cSrcweir 		else
879cdf0e10cSrcweir 		{
880cdf0e10cSrcweir 			if(isBezier())
881cdf0e10cSrcweir 			{
882cdf0e10cSrcweir 				// copy bezier; cut off right, then cut off left. Do not forget to
883cdf0e10cSrcweir 				// adapt cut value when both cuts happen
884cdf0e10cSrcweir 				const bool bEndIsOne(fTools::equal(fEnd, 1.0));
885cdf0e10cSrcweir 				const bool bStartIsZero(fTools::equalZero(fStart));
886cdf0e10cSrcweir 				aRetval = *this;
887cdf0e10cSrcweir 
888cdf0e10cSrcweir 				if(!bEndIsOne)
889cdf0e10cSrcweir 				{
890cdf0e10cSrcweir 					aRetval.split(fEnd, &aRetval, 0);
891cdf0e10cSrcweir 
892cdf0e10cSrcweir 					if(!bStartIsZero)
893cdf0e10cSrcweir 					{
894cdf0e10cSrcweir 						fStart /= fEnd;
895cdf0e10cSrcweir 					}
896cdf0e10cSrcweir 				}
897cdf0e10cSrcweir 
898cdf0e10cSrcweir 				if(!bStartIsZero)
899cdf0e10cSrcweir 				{
900cdf0e10cSrcweir 					aRetval.split(fStart, 0, &aRetval);
901cdf0e10cSrcweir 				}
902cdf0e10cSrcweir 			}
903cdf0e10cSrcweir 			else
904cdf0e10cSrcweir 			{
905cdf0e10cSrcweir 				// no bezier, create simple edge
906cdf0e10cSrcweir 				const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart));
907cdf0e10cSrcweir 				const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd));
908cdf0e10cSrcweir 				aRetval.setStartPoint(aPointA);
909cdf0e10cSrcweir 				aRetval.setEndPoint(aPointB);
910cdf0e10cSrcweir 				aRetval.setControlPointA(aPointA);
911cdf0e10cSrcweir 				aRetval.setControlPointB(aPointB);
912cdf0e10cSrcweir 			}
913cdf0e10cSrcweir 		}
914cdf0e10cSrcweir 
915cdf0e10cSrcweir 		return aRetval;
916cdf0e10cSrcweir 	}
917cdf0e10cSrcweir 
getRange() const918cdf0e10cSrcweir 	B2DRange B2DCubicBezier::getRange() const
919cdf0e10cSrcweir 	{
920cdf0e10cSrcweir 		B2DRange aRetval(maStartPoint, maEndPoint);
921cdf0e10cSrcweir 
922cdf0e10cSrcweir 		aRetval.expand(maControlPointA);
923cdf0e10cSrcweir 		aRetval.expand(maControlPointB);
924cdf0e10cSrcweir 
925cdf0e10cSrcweir 		return aRetval;
926cdf0e10cSrcweir 	}
927cdf0e10cSrcweir 
getMinimumExtremumPosition(double & rfResult) const928cdf0e10cSrcweir 	bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const
929cdf0e10cSrcweir 	{
930cdf0e10cSrcweir 		::std::vector< double > aAllResults;
931cdf0e10cSrcweir 
932cdf0e10cSrcweir 		aAllResults.reserve(4);
933cdf0e10cSrcweir 		getAllExtremumPositions(aAllResults);
934cdf0e10cSrcweir 
935cdf0e10cSrcweir 		const sal_uInt32 nCount(aAllResults.size());
936cdf0e10cSrcweir 
937cdf0e10cSrcweir 		if(!nCount)
938cdf0e10cSrcweir 		{
939cdf0e10cSrcweir 			return false;
940cdf0e10cSrcweir 		}
941cdf0e10cSrcweir 		else if(1 == nCount)
942cdf0e10cSrcweir 		{
943cdf0e10cSrcweir 			rfResult = aAllResults[0];
944cdf0e10cSrcweir 			return true;
945cdf0e10cSrcweir 		}
946cdf0e10cSrcweir 		else
947cdf0e10cSrcweir 		{
948cdf0e10cSrcweir 			rfResult = *(::std::min_element(aAllResults.begin(), aAllResults.end()));
949cdf0e10cSrcweir 			return true;
950cdf0e10cSrcweir 		}
951cdf0e10cSrcweir 	}
952cdf0e10cSrcweir 
953cdf0e10cSrcweir 	namespace
954cdf0e10cSrcweir 	{
impCheckExtremumResult(double fCandidate,::std::vector<double> & rResult)955cdf0e10cSrcweir 		inline void impCheckExtremumResult(double fCandidate, ::std::vector< double >& rResult)
956cdf0e10cSrcweir 		{
957cdf0e10cSrcweir             // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly
958cdf0e10cSrcweir             // by using the equalZero test, NOT ::more or ::less which will use the
959cdf0e10cSrcweir             // ApproxEqual() which is too exact here
960cdf0e10cSrcweir             if(fCandidate > 0.0 && !fTools::equalZero(fCandidate))
961cdf0e10cSrcweir             {
962cdf0e10cSrcweir                 if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0))
963cdf0e10cSrcweir                 {
964cdf0e10cSrcweir     				rResult.push_back(fCandidate);
965cdf0e10cSrcweir                 }
966cdf0e10cSrcweir 			}
967cdf0e10cSrcweir 		}
968cdf0e10cSrcweir 	}
969cdf0e10cSrcweir 
getAllExtremumPositions(::std::vector<double> & rResults) const970cdf0e10cSrcweir 	void B2DCubicBezier::getAllExtremumPositions(::std::vector< double >& rResults) const
971cdf0e10cSrcweir 	{
972cdf0e10cSrcweir 		rResults.clear();
973cdf0e10cSrcweir 
974cdf0e10cSrcweir 		// calculate the x-extrema parameters by zeroing first x-derivative
975cdf0e10cSrcweir 		// of the cubic bezier's parametric formula, which results in a
976cdf0e10cSrcweir 		// quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
977cdf0e10cSrcweir 		const B2DPoint aControlDiff( maControlPointA - maControlPointB );
978cdf0e10cSrcweir 		double fCX = maControlPointA.getX() - maStartPoint.getX();
979cdf0e10cSrcweir 		const double fBX = fCX + aControlDiff.getX();
980cdf0e10cSrcweir 		const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX());
981cdf0e10cSrcweir 
982cdf0e10cSrcweir 		if(fTools::equalZero(fCX))
983cdf0e10cSrcweir 		{
984cdf0e10cSrcweir 			// detect fCX equal zero and truncate to real zero value in that case
985cdf0e10cSrcweir 			fCX = 0.0;
986cdf0e10cSrcweir 		}
987cdf0e10cSrcweir 
988cdf0e10cSrcweir 		if( !fTools::equalZero(fAX) )
989cdf0e10cSrcweir 		{
990cdf0e10cSrcweir 			// derivative is polynomial of order 2 => use binomial formula
991cdf0e10cSrcweir 			const double fD = fBX*fBX - fAX*fCX;
992cdf0e10cSrcweir 			if( fD >= 0.0 )
993cdf0e10cSrcweir 			{
994cdf0e10cSrcweir 				const double fS = sqrt(fD);
995cdf0e10cSrcweir 				// calculate both roots (avoiding a numerically unstable subtraction)
996cdf0e10cSrcweir 				const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
997cdf0e10cSrcweir 				impCheckExtremumResult(fQ / fAX, rResults);
998cdf0e10cSrcweir 				if( !fTools::equalZero(fS) ) // ignore root multiplicity
999cdf0e10cSrcweir 					impCheckExtremumResult(fCX / fQ, rResults);
1000cdf0e10cSrcweir 			}
1001cdf0e10cSrcweir 		}
1002cdf0e10cSrcweir 		else if( !fTools::equalZero(fBX) )
1003cdf0e10cSrcweir 		{
1004cdf0e10cSrcweir 			// derivative is polynomial of order 1 => one extrema
1005cdf0e10cSrcweir 			impCheckExtremumResult(fCX / (2 * fBX), rResults);
1006cdf0e10cSrcweir 		}
1007cdf0e10cSrcweir 
1008cdf0e10cSrcweir 		// calculate the y-extrema parameters by zeroing first y-derivative
1009cdf0e10cSrcweir 		double fCY = maControlPointA.getY() - maStartPoint.getY();
1010cdf0e10cSrcweir 		const double fBY = fCY + aControlDiff.getY();
1011cdf0e10cSrcweir 		const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY());
1012cdf0e10cSrcweir 
1013cdf0e10cSrcweir 		if(fTools::equalZero(fCY))
1014cdf0e10cSrcweir 		{
1015cdf0e10cSrcweir 			// detect fCY equal zero and truncate to real zero value in that case
1016cdf0e10cSrcweir 			fCY = 0.0;
1017cdf0e10cSrcweir 		}
1018cdf0e10cSrcweir 
1019cdf0e10cSrcweir 		if( !fTools::equalZero(fAY) )
1020cdf0e10cSrcweir 		{
1021cdf0e10cSrcweir 			// derivative is polynomial of order 2 => use binomial formula
1022cdf0e10cSrcweir 			const double fD = fBY*fBY - fAY*fCY;
1023cdf0e10cSrcweir 			if( fD >= 0.0 )
1024cdf0e10cSrcweir 			{
1025cdf0e10cSrcweir 				const double fS = sqrt(fD);
1026cdf0e10cSrcweir 				// calculate both roots (avoiding a numerically unstable subtraction)
1027cdf0e10cSrcweir 				const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
1028cdf0e10cSrcweir 				impCheckExtremumResult(fQ / fAY, rResults);
1029cdf0e10cSrcweir 				if( !fTools::equalZero(fS) ) // ignore root multiplicity
1030cdf0e10cSrcweir 					impCheckExtremumResult(fCY / fQ, rResults);
1031cdf0e10cSrcweir 			}
1032cdf0e10cSrcweir 		}
1033cdf0e10cSrcweir 		else if( !fTools::equalZero(fBY) )
1034cdf0e10cSrcweir 		{
1035cdf0e10cSrcweir 			// derivative is polynomial of order 1 => one extrema
1036cdf0e10cSrcweir 			impCheckExtremumResult(fCY / (2 * fBY), rResults);
1037cdf0e10cSrcweir 		}
1038cdf0e10cSrcweir 	}
1039cdf0e10cSrcweir 
getMaxDistancePositions(double pResult[2]) const1040cdf0e10cSrcweir 	int B2DCubicBezier::getMaxDistancePositions( double pResult[2]) const
1041cdf0e10cSrcweir 	{
1042cdf0e10cSrcweir 		// the distance from the bezier to a line through start and end
1043cdf0e10cSrcweir 		// is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t)-STARTy,-BEZIERx(t)-STARTx)
1044cdf0e10cSrcweir 		// this distance becomes zero for at least t==0 and t==1
1045cdf0e10cSrcweir 		// its extrema that are between 0..1 are interesting as split candidates
1046cdf0e10cSrcweir 		// its derived function has the form dD/dt = fA*t^2 + 2*fB*t + fC
1047cdf0e10cSrcweir 		const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
1048cdf0e10cSrcweir 		const double fA = (3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX()) * aRelativeEndPoint.getY()
1049cdf0e10cSrcweir 				- (3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY()) * aRelativeEndPoint.getX();
1050cdf0e10cSrcweir 		const double fB = (maControlPointB.getX() - 2 * maControlPointA.getX() + maStartPoint.getX()) * aRelativeEndPoint.getY()
1051cdf0e10cSrcweir 				- (maControlPointB.getY() - 2 * maControlPointA.getY() + maStartPoint.getY()) * aRelativeEndPoint.getX();
1052cdf0e10cSrcweir 		const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY()
1053cdf0e10cSrcweir 				- (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX();
1054cdf0e10cSrcweir 
1055cdf0e10cSrcweir 		// test for degenerated case: order<2
1056cdf0e10cSrcweir 		if( fTools::equalZero(fA) )
1057cdf0e10cSrcweir 		{
1058cdf0e10cSrcweir 			// test for degenerated case: order==0
1059cdf0e10cSrcweir 			if( fTools::equalZero(fB) )
1060cdf0e10cSrcweir 				return 0;
1061cdf0e10cSrcweir 
1062cdf0e10cSrcweir 			// solving the order==1 polynomial is trivial
1063cdf0e10cSrcweir 			pResult[0] = -fC / (2*fB);
1064cdf0e10cSrcweir 
1065cdf0e10cSrcweir 			// test root and ignore it when it is outside the curve
1066cdf0e10cSrcweir 			int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
1067cdf0e10cSrcweir 			return nCount;
1068cdf0e10cSrcweir 		}
1069cdf0e10cSrcweir 
1070cdf0e10cSrcweir 		// derivative is polynomial of order 2
1071cdf0e10cSrcweir 		// check if the polynomial has non-imaginary roots
1072cdf0e10cSrcweir 		const double fD = fB*fB - fA*fC;
1073cdf0e10cSrcweir 		if( fD >= 0.0 )	// TODO: is this test needed? geometrically not IMHO
1074cdf0e10cSrcweir 		{
1075cdf0e10cSrcweir 			// calculate first root (avoiding a numerically unstable subtraction)
1076cdf0e10cSrcweir 			const double fS = sqrt(fD);
1077cdf0e10cSrcweir 			const double fQ = -(fB + ((fB >= 0) ? +fS : -fS));
1078cdf0e10cSrcweir 			pResult[0] = fQ / fA;
1079cdf0e10cSrcweir 			// ignore root when it is outside the curve
1080cdf0e10cSrcweir 			static const double fEps = 1e-9;
1081cdf0e10cSrcweir 			int nCount = ((pResult[0] > fEps) && (pResult[0] < fEps));
1082cdf0e10cSrcweir 
1083cdf0e10cSrcweir 			// ignore root multiplicity
1084cdf0e10cSrcweir 			if( !fTools::equalZero(fD) )
1085cdf0e10cSrcweir 			{
1086cdf0e10cSrcweir  				// calculate the other root
1087cdf0e10cSrcweir 				const double fRoot = fC / fQ;
1088cdf0e10cSrcweir 				// ignore root when it is outside the curve
1089cdf0e10cSrcweir 				if( (fRoot > fEps) && (fRoot < 1.0-fEps) )
1090cdf0e10cSrcweir 					pResult[ nCount++ ] = fRoot;
1091cdf0e10cSrcweir 			}
1092cdf0e10cSrcweir 
1093cdf0e10cSrcweir 			return nCount;
1094cdf0e10cSrcweir 		}
1095cdf0e10cSrcweir 
1096cdf0e10cSrcweir 		return 0;
1097cdf0e10cSrcweir 	}
1098cdf0e10cSrcweir 
1099cdf0e10cSrcweir } // end of namespace basegfx
1100cdf0e10cSrcweir 
1101cdf0e10cSrcweir // eof
1102