1 /**************************************************************
2  *
3  * Licensed to the Apache Software Foundation (ASF) under one
4  * or more contributor license agreements.  See the NOTICE file
5  * distributed with this work for additional information
6  * regarding copyright ownership.  The ASF licenses this file
7  * to you under the Apache License, Version 2.0 (the
8  * "License"); you may not use this file except in compliance
9  * with the License.  You may obtain a copy of the License at
10  *
11  *   http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing,
14  * software distributed under the License is distributed on an
15  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  * KIND, either express or implied.  See the License for the
17  * specific language governing permissions and limitations
18  * under the License.
19  *
20  *************************************************************/
21 
22 
23 
24 // MARKER(update_precomp.py): autogen include statement, do not remove
25 #include "precompiled_bridges.hxx"
26 
27 #include <malloc.h>
28 
29 #include <com/sun/star/uno/genfunc.hxx>
30 #include <uno/data.h>
31 
32 #include "bridges/cpp_uno/shared/bridge.hxx"
33 #include "bridges/cpp_uno/shared/types.hxx"
34 #include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
35 #include "bridges/cpp_uno/shared/vtables.hxx"
36 
37 #include "share.hxx"
38 
39 
40 using namespace ::rtl;
41 using namespace ::com::sun::star::uno;
42 
43 namespace
44 {
45 
46 
47 //==================================================================================================
48 static void callVirtualMethod(
49     void * pAdjustedThisPtr,
50     sal_Int32 nVtableIndex,
51     void * pRegisterReturn,
52     typelib_TypeClass eReturnType,
53     char * pPT,
54     sal_Int32 * pStackLongs,
55     sal_Int32 nStackLongs)
56 {
57 
58   // parameter list is mixed list of * and values
59   // reference parameters are pointers
60 
61   // the basic idea here is to use gpr[8] as a storage area for
62   // the future values of registers r3 to r10 needed for the call,
63   // and similarly fpr[8] as a storage area for the future values
64   // of floating point registers f1 to f8
65 
66      unsigned long * mfunc;        // actual function to be invoked
67      void (*ptr)();
68      int gpr[8];                   // storage for gpregisters, map to r3-r10
69      int off;                      // offset used to find function
70 #ifndef __NO_FPRS__
71      double fpr[8];                // storage for fpregisters, map to f1-f8
72      int f;                        // number of fprs mapped so far
73      double dret;                  // temporary function return values
74 #endif
75      int n;                        // number of gprs mapped so far
76      long *p;                      // pointer to parameter overflow area
77      int c;                        // character of parameter type being decoded
78      int iret, iret2;
79 
80      // Because of the Power PC calling conventions we could be passing
81      // parameters in both register types and on the stack. To create the
82      // stack parameter area we need we now simply allocate local
83      // variable storage param[] that is at least the size of the parameter stack
84      // (more than enough space) which we can overwrite the parameters into.
85 
86      // Note: This keeps us from having to decode the signature twice and
87      // prevents problems with later local variables.
88 
89      // Note: could require up to  2*nStackLongs words of parameter stack area
90      // if the call has many float parameters (i.e. floats take up only 1
91      // word on the stack but double takes 2 words in parameter area in the
92      // stack frame .
93 
94      // Update! floats on the outgoing parameter stack only take up 1 word
95      // (stfs is used) which is not correct according to the ABI but we
96      // will match what the compiler does until this is figured out
97 
98      // this grows the current stack to the appropriate size
99      // and sets the outgoing stack pointer p to the right place
100      __asm__ __volatile__ (
101           "rlwinm %0,%0,3,3,28\n\t"
102           "addi %0,%0,22\n\t"
103           "rlwinm %0,%0,0,4,28\n\t"
104           "lwz 0,0(1)\n\t"
105           "subf 1,%0,1\n\t"
106           "stw 0,0(1)\n\t"
107           : : "r" (nStackLongs) : "0" );
108 
109      __asm__ __volatile__ ( "addi %0,1,8" : "=r" (p) : );
110 
111      // never called
112      // if (! pAdjustedThisPtr ) dummy_can_throw_anything("xxx"); // address something
113 
114 
115      // now begin to load the C++ function arguments into storage
116      n = 0;
117 #ifndef __NO_FPRS__
118      f = 0;
119 #endif
120 
121      // now we need to parse the entire signature string */
122      // until we get the END indicator */
123 
124      // treat complex return pointer like any other parameter //
125 
126 #if 0
127      /* Let's figure out what is really going on here*/
128      fprintf(stderr,"callVirtualMethod paramters string is %s\n",pPT);
129      int k = nStackLongs;
130      long * q = (long *)pStackLongs;
131      while (k > 0) {
132        fprintf(stderr,"uno stack is: %x\n",*q);
133        k--;
134        q++;
135      }
136 #endif
137 
138      /* parse the argument list up to the ending ) */
139      while (*pPT != 'X') {
140        c = *pPT;
141        switch (c) {
142        case 'D':                   /* type is double */
143 #ifndef __NO_FPRS__
144             if (f < 8) {
145                fpr[f++] = *((double *)pStackLongs);   /* store in register */
146 #else
147             if (n & 1)
148                n++;
149             if (n < 8) {
150                gpr[n++] = *pStackLongs;
151                gpr[n++] = *(pStackLongs+1);
152 #endif
153 	    } else {
154 	       if (((long) p) & 4)
155 	          p++;
156                *p++ = *pStackLongs;       /* or on the parameter stack */
157                *p++ = *(pStackLongs + 1);
158 	    }
159             pStackLongs += 2;
160             break;
161 
162        case 'F':                   /* type is float */
163 	 /* this assumes that floats are stored as 1 32 bit word on param
164 	    stack and that if passed in parameter stack to C, should be
165 	    as double word.
166 
167             Whoops: the abi is not actually followed by gcc, need to
168             store floats as a *single* word on outgoing parameter stack
169             to match what gcc actually does
170 	 */
171 #ifndef __NO_FPRS__
172             if (f < 8) {
173                fpr[f++] = *((float *)pStackLongs);
174 #else
175             if (n < 8) {
176                gpr[n++] = *pStackLongs;
177 #endif
178 	    } else {
179 #if 0 /* if abi were followed */
180 	       if (((long) p) & 4)
181 	          p++;
182 	       *((double *)p) = *((float *)pStackLongs);
183                p += 2;
184 #else
185 	       *((float *)p) = *((float *)pStackLongs);
186                p += 1;
187 #endif
188 	    }
189             pStackLongs += 1;
190             break;
191 
192        case 'H':                /* type is long long */
193             if (n & 1) n++; 	/* note even elements gpr[] will map to
194                                    odd registers*/
195             if (n <= 6) {
196                gpr[n++] = *pStackLongs;
197                gpr[n++] = *(pStackLongs+1);
198 	    } else {
199 	       if (((long) p) & 4)
200 	          p++;
201                *p++ = *pStackLongs;
202                *p++ = *(pStackLongs+1);
203 	    }
204             pStackLongs += 2;
205             break;
206 
207        case 'S':
208             if (n < 8) {
209                gpr[n++] = *((unsigned short*)pStackLongs);
210 	    } else {
211                *p++ = *((unsigned short *)pStackLongs);
212 	    }
213             pStackLongs += 1;
214             break;
215 
216        case 'B':
217             if (n < 8) {
218                gpr[n++] = *((char *)pStackLongs);
219 	    } else {
220                *p++ = *((char *)pStackLongs);
221 	    }
222             pStackLongs += 1;
223             break;
224 
225        default:
226             if (n < 8) {
227                gpr[n++] = *pStackLongs;
228 	    } else {
229                *p++ = *pStackLongs;
230 	    }
231             pStackLongs += 1;
232             break;
233        }
234        pPT++;
235      }
236 
237      /* figure out the address of the function we need to invoke */
238      off = nVtableIndex;
239      off = off * 4;                         // 4 bytes per slot
240      mfunc = *((unsigned long **)pAdjustedThisPtr);    // get the address of the vtable
241      mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset
242      mfunc = *((unsigned long **)mfunc);                 // the function is stored at the address
243      ptr = (void (*)())mfunc;
244 
245     /* Set up the machine registers and invoke the function */
246 
247     __asm__ __volatile__ (
248 		"lwz	3,	0(%0)\n\t"
249 		"lwz	4,	4(%0)\n\t"
250 		"lwz	5,	8(%0)\n\t"
251 		"lwz	6,	12(%0)\n\t"
252 		"lwz	7,	16(%0)\n\t"
253 		"lwz	8,	20(%0)\n\t"
254 		"lwz	9,	24(%0)\n\t"
255 		"lwz	10,	28(%0)\n\t"
256 #ifndef __NO_FPRS__
257 		"lfd	1,	0(%1)\n\t"
258 		"lfd	2,	8(%1)\n\t"
259 		"lfd	3,	16(%1)\n\t"
260 		"lfd	4,	24(%1)\n\t"
261 		"lfd	5,	32(%1)\n\t"
262 		"lfd	6,	40(%1)\n\t"
263 		"lfd	7,	48(%1)\n\t"
264 		"lfd	8,	56(%1)\n\t"
265 	        : : "r" (gpr), "r" (fpr)
266 #else
267 	        : : "r" (gpr)
268 #endif
269 		: "0", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"
270     );
271 
272     (*ptr)();
273 
274     __asm__ __volatile__ (
275        "mr     %0,     3\n\t"
276        "mr     %1,     4\n\t"
277 #ifndef __NO_FPRS__
278        "fmr    %2,     1\n\t"
279        : "=r" (iret), "=r" (iret2), "=f" (dret)
280 #else
281        : "=r" (iret), "=r" (iret2)
282 #endif
283        : );
284 
285     switch( eReturnType )
286 	{
287 		case typelib_TypeClass_HYPER:
288 		case typelib_TypeClass_UNSIGNED_HYPER:
289 		        ((long*)pRegisterReturn)[0] = iret;
290 			((long*)pRegisterReturn)[1] = iret2;
291 		case typelib_TypeClass_LONG:
292 		case typelib_TypeClass_UNSIGNED_LONG:
293 		case typelib_TypeClass_ENUM:
294 			((long*)pRegisterReturn)[0] = iret;
295 			break;
296 		case typelib_TypeClass_CHAR:
297 		case typelib_TypeClass_SHORT:
298 		case typelib_TypeClass_UNSIGNED_SHORT:
299 		        *(unsigned short*)pRegisterReturn = (unsigned short)iret;
300 			break;
301 		case typelib_TypeClass_BOOLEAN:
302 		case typelib_TypeClass_BYTE:
303 		        *(unsigned char*)pRegisterReturn = (unsigned char)iret;
304 			break;
305 		case typelib_TypeClass_FLOAT:
306 #ifndef __NO_FPRS__
307 		        *(float*)pRegisterReturn = (float)dret;
308 #else
309 		        ((unsigned int*)pRegisterReturn)[0] = iret;
310 #endif
311 			break;
312 		case typelib_TypeClass_DOUBLE:
313 #ifndef __NO_FPRS__
314 			*(double*)pRegisterReturn = dret;
315 #else
316 			((unsigned int*)pRegisterReturn)[0] = iret;
317 			((unsigned int*)pRegisterReturn)[1] = iret2;
318 #endif
319 			break;
320 		default:
321 			break;
322 	}
323 }
324 
325 
326 //==================================================================================================
327 static void cpp_call(
328 	bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
329 	bridges::cpp_uno::shared::VtableSlot  aVtableSlot,
330 	typelib_TypeDescriptionReference * pReturnTypeRef,
331 	sal_Int32 nParams, typelib_MethodParameter * pParams,
332 	void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
333 {
334   	// max space for: [complex ret ptr], values|ptr ...
335   	char * pCppStack		=
336   		(char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
337   	char * pCppStackStart	= pCppStack;
338 
339         // need to know parameter types for callVirtualMethod so generate a signature string
340         char * pParamType = (char *) alloca(nParams+2);
341         char * pPT = pParamType;
342 
343 	// return
344 	typelib_TypeDescription * pReturnTypeDescr = 0;
345 	TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
346 	// OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
347 
348 	void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
349 
350 	if (pReturnTypeDescr)
351 	{
352 		if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
353 		{
354 			pCppReturn = pUnoReturn; // direct way for simple types
355 		}
356 		else
357 		{
358 			// complex return via ptr
359 			pCppReturn = *(void **)pCppStack =
360                               (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
361 			       ? alloca( pReturnTypeDescr->nSize ): pUnoReturn); // direct way
362                         *pPT++ = 'I'; //signify that a complex return type on stack
363 			pCppStack += sizeof(void *);
364 		}
365 	}
366 	// push this
367         void* pAdjustedThisPtr = reinterpret_cast< void **>(pThis->getCppI()) + aVtableSlot.offset;
368 	*(void**)pCppStack = pAdjustedThisPtr;
369 	pCppStack += sizeof( void* );
370         *pPT++ = 'I';
371 
372 	// stack space
373 	// OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
374 	// args
375 	void ** pCppArgs  = (void **)alloca( 3 * sizeof(void *) * nParams );
376 	// indizes of values this have to be converted (interface conversion cpp<=>uno)
377 	sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
378 	// type descriptions for reconversions
379 	typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
380 
381 	sal_Int32 nTempIndizes   = 0;
382 
383 	for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
384 	{
385 		const typelib_MethodParameter & rParam = pParams[nPos];
386 		typelib_TypeDescription * pParamTypeDescr = 0;
387 		TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
388 
389 		if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
390 		{
391 			uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
392 									pThis->getBridge()->getUno2Cpp() );
393 
394 			switch (pParamTypeDescr->eTypeClass)
395 			{
396 
397                           // we need to know type of each param so that we know whether to use
398                           // gpr or fpr to pass in parameters:
399                           // Key: I - int, long, pointer, etc means pass in gpr
400                           //      B - byte value passed in gpr
401                           //      S - short value passed in gpr
402                           //      F - float value pass in fpr
403                           //      D - double value pass in fpr
404                           //      H - long long int pass in proper pairs of gpr (3,4) (5,6), etc
405                           //      X - indicates end of parameter description string
406 
407 		          case typelib_TypeClass_LONG:
408 		          case typelib_TypeClass_UNSIGNED_LONG:
409 		          case typelib_TypeClass_ENUM:
410 			    *pPT++ = 'I';
411 			    break;
412  		          case typelib_TypeClass_SHORT:
413 		          case typelib_TypeClass_CHAR:
414 		          case typelib_TypeClass_UNSIGNED_SHORT:
415                             *pPT++ = 'S';
416                             break;
417 		          case typelib_TypeClass_BOOLEAN:
418 		          case typelib_TypeClass_BYTE:
419                             *pPT++ = 'B';
420                             break;
421 		          case typelib_TypeClass_FLOAT:
422                             *pPT++ = 'F';
423 			    break;
424 		        case typelib_TypeClass_DOUBLE:
425 			    *pPT++ = 'D';
426 			    pCppStack += sizeof(sal_Int32); // extra long
427 			    break;
428 			case typelib_TypeClass_HYPER:
429 			case typelib_TypeClass_UNSIGNED_HYPER:
430 			    *pPT++ = 'H';
431 			    pCppStack += sizeof(sal_Int32); // extra long
432 			default:
433 			    break;
434 			}
435 
436 			// no longer needed
437 			TYPELIB_DANGER_RELEASE( pParamTypeDescr );
438 		}
439 		else // ptr to complex value | ref
440 		{
441 			if (! rParam.bIn) // is pure out
442 			{
443 				// cpp out is constructed mem, uno out is not!
444 				uno_constructData(
445 					*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
446 					pParamTypeDescr );
447 				pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
448 				// will be released at reconversion
449 				ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
450 			}
451 			// is in/inout
452 			else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
453 			{
454 				uno_copyAndConvertData(
455 					*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
456 					pUnoArgs[nPos], pParamTypeDescr,
457                                         pThis->getBridge()->getUno2Cpp() );
458 
459 				pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
460 				// will be released at reconversion
461 				ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
462 			}
463 			else // direct way
464 			{
465 				*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
466 				// no longer needed
467 				TYPELIB_DANGER_RELEASE( pParamTypeDescr );
468 			}
469                         // KBH: FIXME: is this the right way to pass these
470                         *pPT++='I';
471 		}
472 		pCppStack += sizeof(sal_Int32); // standard parameter length
473 	}
474 
475         // terminate the signature string
476         *pPT++='X';
477         *pPT=0;
478 
479 	try
480 	{
481 		OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" );
482 		callVirtualMethod(
483 			pAdjustedThisPtr, aVtableSlot.index,
484 			pCppReturn, pReturnTypeDescr->eTypeClass, pParamType,
485 			(sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
486 		// NO exception occured...
487 		*ppUnoExc = 0;
488 
489 		// reconvert temporary params
490 		for ( ; nTempIndizes--; )
491 		{
492 			sal_Int32 nIndex = pTempIndizes[nTempIndizes];
493 			typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
494 
495 			if (pParams[nIndex].bIn)
496 			{
497 				if (pParams[nIndex].bOut) // inout
498 				{
499 					uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
500 					uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
501 											pThis->getBridge()->getCpp2Uno() );
502 				}
503 			}
504 			else // pure out
505 			{
506 				uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
507 										pThis->getBridge()->getCpp2Uno() );
508 			}
509 			// destroy temp cpp param => cpp: every param was constructed
510 			uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
511 
512 			TYPELIB_DANGER_RELEASE( pParamTypeDescr );
513 		}
514 		// return value
515 		if (pCppReturn && pUnoReturn != pCppReturn)
516 		{
517 			uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
518 									pThis->getBridge()->getCpp2Uno() );
519 			uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
520 		}
521 	}
522  	catch (...)
523  	{
524   		// fill uno exception
525 		fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions,
526                                   *ppUnoExc, pThis->getBridge()->getCpp2Uno() );
527 
528 		// temporary params
529 		for ( ; nTempIndizes--; )
530 		{
531 			sal_Int32 nIndex = pTempIndizes[nTempIndizes];
532 			// destroy temp cpp param => cpp: every param was constructed
533 			uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
534 			TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
535 		}
536 		// return type
537 		if (pReturnTypeDescr)
538 			TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
539 	}
540 }
541 
542 }
543 
544 namespace bridges { namespace cpp_uno { namespace shared {
545 
546 void unoInterfaceProxyDispatch(
547 	uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
548 	void * pReturn, void * pArgs[], uno_Any ** ppException )
549 {
550 	// is my surrogate
551         bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
552             = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
553 
554 	switch (pMemberDescr->eTypeClass)
555 	{
556 	case typelib_TypeClass_INTERFACE_ATTRIBUTE:
557 	{
558 
559         VtableSlot aVtableSlot(
560             getVtableSlot(
561                 reinterpret_cast<
562                     typelib_InterfaceAttributeTypeDescription const * >(
563                         pMemberDescr)));
564 
565 		if (pReturn)
566 		{
567 			// dependent dispatch
568 			cpp_call(
569 				pThis, aVtableSlot,
570 				((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
571 				0, 0, // no params
572 				pReturn, pArgs, ppException );
573 		}
574 		else
575 		{
576 			// is SET
577 			typelib_MethodParameter aParam;
578 			aParam.pTypeRef =
579 				((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
580 			aParam.bIn		= sal_True;
581 			aParam.bOut		= sal_False;
582 
583 			typelib_TypeDescriptionReference * pReturnTypeRef = 0;
584 			OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
585 			typelib_typedescriptionreference_new(
586 				&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
587 
588 			// dependent dispatch
589                         aVtableSlot.index += 1; //get then set method
590 			cpp_call(
591 				pThis, aVtableSlot,
592 				pReturnTypeRef,
593 				1, &aParam,
594 				pReturn, pArgs, ppException );
595 
596 			typelib_typedescriptionreference_release( pReturnTypeRef );
597 		}
598 
599 		break;
600 	}
601 	case typelib_TypeClass_INTERFACE_METHOD:
602 	{
603 
604         VtableSlot aVtableSlot(
605             getVtableSlot(
606                 reinterpret_cast<
607                     typelib_InterfaceMethodTypeDescription const * >(
608                         pMemberDescr)));
609 		switch (aVtableSlot.index)
610 		{
611 			// standard calls
612 		case 1: // acquire uno interface
613 			(*pUnoI->acquire)( pUnoI );
614 			*ppException = 0;
615 			break;
616 		case 2: // release uno interface
617 			(*pUnoI->release)( pUnoI );
618 			*ppException = 0;
619 			break;
620 		case 0: // queryInterface() opt
621 		{
622 			typelib_TypeDescription * pTD = 0;
623 			TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
624 			if (pTD)
625 			{
626                 uno_Interface * pInterface = 0;
627                 (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
628                     pThis->pBridge->getUnoEnv(),
629                     (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
630 
631                 if (pInterface)
632                 {
633                     ::uno_any_construct(
634                         reinterpret_cast< uno_Any * >( pReturn ),
635                         &pInterface, pTD, 0 );
636                     (*pInterface->release)( pInterface );
637                     TYPELIB_DANGER_RELEASE( pTD );
638                     *ppException = 0;
639                     break;
640                 }
641                 TYPELIB_DANGER_RELEASE( pTD );
642             }
643 		} // else perform queryInterface()
644 		default:
645 			// dependent dispatch
646 			cpp_call(
647 				pThis, aVtableSlot,
648 				((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
649 				((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
650 				((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
651 				pReturn, pArgs, ppException );
652 		}
653 		break;
654 	}
655 	default:
656 	{
657 		::com::sun::star::uno::RuntimeException aExc(
658 			OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
659 			::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
660 
661 		Type const & rExcType = ::getCppuType( &aExc );
662 		// binary identical null reference
663 		::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
664 	}
665 	}
666 }
667 
668 } } }
669