xref: /trunk/main/vcl/inc/vcl/lazydelete.hxx (revision 0d63794c)
1 /**************************************************************
2  *
3  * Licensed to the Apache Software Foundation (ASF) under one
4  * or more contributor license agreements.  See the NOTICE file
5  * distributed with this work for additional information
6  * regarding copyright ownership.  The ASF licenses this file
7  * to you under the Apache License, Version 2.0 (the
8  * "License"); you may not use this file except in compliance
9  * with the License.  You may obtain a copy of the License at
10  *
11  *   http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing,
14  * software distributed under the License is distributed on an
15  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  * KIND, either express or implied.  See the License for the
17  * specific language governing permissions and limitations
18  * under the License.
19  *
20  *************************************************************/
21 
22 
23 
24 #ifndef _VCL_LAZYDELETE_HXX
25 #define _VCL_LAZYDELETE_HXX
26 
27 #include "dllapi.h"
28 
29 #include <vector>
30 #include <hash_map>
31 #include <algorithm>
32 
33 #if OSL_DEBUG_LEVEL > 2
34 #include <typeinfo>
35 #include <stdio.h>
36 #endif
37 
38 #include <com/sun/star/lang/XComponent.hpp>
39 
40 namespace vcl
41 {
42     /* Helpers for lazy object deletion
43 
44     With vcl it is often necessary to delete objects (especially Windows)
45     in the right order as well as in a way ensuring that the deleted objects
46     are not still on the stack (e.g. deleting a Window in its key handler). To
47     make this easier a helper class is given here which takes care of both
48     sorting as well as lazy deletion.
49 
50     The grisly details:
51     LazyDelete is a class that LazyDeletor register to. When vcl's event
52     loop (that is Application::Yield or Application::Reschedule) comes out
53     of the last level, the LazyDelete::flush is called. This will cause
54     LazyDelete to delete all registered LazyDeletor objects.
55 
56     LazyDeletor<T> is a one instance object that contains a list of
57     <T> objects to be deleted in sorted order. It is derived from
58     LazyDeletorBase as to be able to register itself in LazyDelete.
59 
60     The user calls the static method LazyDeletor<T>::Delete( T* ) with the
61     object to be destroyed lazy. The static method creates the LazyDeletor<T>
62     (which in turn registers itself in LazyDelete) if this is the first time
63     a T* is to be destroyed lazy. It then inserts the object. When the LazyDeletor<T>
64     gets delte it will delete the stored objects in a fashion
65     that will ensure the correct order of deletion via the specialized is_less method
66     (e.g. if a Window is a child of another Window and therefore should be destroyed
67     first it is "less" in this sense)
68 
69     LazyDelete::flush will be called when the top of the nested event loop is
70     reached again and will then destroy each registered LazyDeletor<T> which
71     in turn destroys the objects needed to be destroyed lazily. After this
72     the state is as before entering the event loop.
73 
74     Preconditions:
75     - The class <T> of which objects are to be destroyed needs a virtual
76     destructor or must be final, else the wrong type will be destroyed.
77     - The destructor of <T> should call LazyDeletor<T>::Undelete( this ). This
78     prevents duplicate deletionin case someone destroys the object prematurely.
79     */
80 
81     class LazyDeletorBase;
82     class VCL_DLLPUBLIC LazyDelete
83     {
84         public:
85         /** flush all registered object lists
86         */
87         static void flush();
88         /** register an object list to be destroyed
89         */
90         static void addDeletor( LazyDeletorBase* pDeletor );
91     };
92 
93     class VCL_DLLPUBLIC LazyDeletorBase
94     {
95         friend void LazyDelete::flush();
96         protected:
97         LazyDeletorBase();
98         virtual ~LazyDeletorBase();
99     };
100 
101     template < typename T >
102     class VCL_DLLPUBLIC LazyDeletor : public LazyDeletorBase
103     {
104         static LazyDeletor< T >*     s_pOneInstance;
105 
106         struct DeleteObjectEntry
107         {
108             T*      m_pObject;
109             bool    m_bDeleted;
110 
111             DeleteObjectEntry() :
112                 m_pObject( NULL ),
113                 m_bDeleted( false )
114             {}
115 
116             DeleteObjectEntry( T* i_pObject ) :
117                 m_pObject( i_pObject ),
118                 m_bDeleted( false )
119             {}
120         };
121 
122         std::vector< DeleteObjectEntry >    m_aObjects;
123         typedef std::hash_map< sal_IntPtr, unsigned int > PtrToIndexMap;
124         PtrToIndexMap                       m_aPtrToIndex;
125 
126         /** strict weak ordering funtion to bring objects to be destroyed lazily
127         in correct order, e.g. for Window objects children before parents
128         */
129         static bool is_less( T* left, T* right );
130 
131         LazyDeletor()  { LazyDelete::addDeletor( this ); }
132         virtual ~LazyDeletor()
133         {
134             #if OSL_DEBUG_LEVEL > 2
135             fprintf( stderr, "%s %p deleted\n",
136                      typeid(*this).name(), this );
137             #endif
138             if( s_pOneInstance == this ) // sanity check
139                 s_pOneInstance = NULL;
140 
141             // do the actual work
142             unsigned int nCount = m_aObjects.size();
143             std::vector<T*> aRealDelete;
144             aRealDelete.reserve( nCount );
145             for( unsigned int i = 0; i < nCount; i++ )
146             {
147                 if( ! m_aObjects[i].m_bDeleted )
148                 {
149                     aRealDelete.push_back( m_aObjects[i].m_pObject );
150                 }
151             }
152             // sort the vector of objects to be destroyed
153             std::sort( aRealDelete.begin(), aRealDelete.end(), is_less );
154             nCount = aRealDelete.size();
155             for( unsigned int n = 0; n < nCount; n++ )
156             {
157                 #if OSL_DEBUG_LEVEL > 2
158                 fprintf( stderr, "%s deletes object %p of type %s\n",
159                          typeid(*this).name(),
160                          aRealDelete[n],
161                          typeid(*aRealDelete[n]).name() );
162                 #endif
163                 // check if the object to be deleted is not already destroyed
164                 // as a side effect of a previous lazily destroyed object
165                 if( ! m_aObjects[ m_aPtrToIndex[ reinterpret_cast<sal_IntPtr>(aRealDelete[n]) ] ].m_bDeleted )
166                     delete aRealDelete[n];
167             }
168         }
169 
170         public:
171         /** mark an object for lazy deletion
172         */
173         static void Delete( T* i_pObject )
174         {
175             if( s_pOneInstance == NULL )
176                 s_pOneInstance = new LazyDeletor<T>();
177 
178             // is this object already in the list ?
179             // if so mark it as not to be deleted; else insert it
180             PtrToIndexMap::const_iterator dup = s_pOneInstance->m_aPtrToIndex.find( reinterpret_cast<sal_IntPtr>(i_pObject) );
181             if( dup != s_pOneInstance->m_aPtrToIndex.end() )
182             {
183                 s_pOneInstance->m_aObjects[ dup->second ].m_bDeleted = false;
184             }
185             else
186             {
187                 s_pOneInstance->m_aPtrToIndex[ reinterpret_cast<sal_IntPtr>(i_pObject) ] = s_pOneInstance->m_aObjects.size();
188                 s_pOneInstance->m_aObjects.push_back( DeleteObjectEntry( i_pObject ) );
189             }
190         }
191         /** unmark an object already marked for lazy deletion
192         */
193         static void Undelete( T* i_pObject )
194         {
195             if( s_pOneInstance )
196             {
197                 PtrToIndexMap::const_iterator it = s_pOneInstance->m_aPtrToIndex.find( reinterpret_cast<sal_IntPtr>(i_pObject) );
198                 if( it != s_pOneInstance->m_aPtrToIndex.end() )
199                     s_pOneInstance->m_aObjects[ it->second ].m_bDeleted = true;
200             }
201         }
202     };
203 
204     /*
205     class DeleteOnDeinit matches a similar need as LazyDelete for static objects:
206     you may not access vcl objects after DeInitVCL has been called this includes their destruction
207     therefore disallowing the existance of static vcl object like e.g. a static BitmapEx
208     To work around this use DeleteOnDeinit<BitmapEx> which will allow you to have a static object container,
209     that will have its contents destroyed on DeinitVCL. The single drawback is that you need to check on the
210     container object whether it still contains content before actually accessing it.
211 
212     caveat: when constructing a vcl object, you certainly want to ensure that InitVCL has run already.
213     However this is not necessarily the case when using a class static member or a file level static variable.
214     In these cases make judicious use of the set() method of DeleteOnDeinit, but beware of the changing
215     ownership.
216 
217     example use case: use a lazy initialized on call BitmapEx in a paint method. Of course a paint method
218     would not normally be called after DeInitVCL anyway, so the check might not be necessary in a
219     Window::Paint implementation, but always checking is a good idea.
220 
221     SomeWindow::Paint()
222     {
223         static vcl::DeleteOnDeinit< BitmapEx > aBmp( new BitmapEx( ResId( 1000, myResMgr ) ) );
224 
225         if( aBmp.get() ) // check whether DeInitVCL has been called already
226             DrawBitmapEx( Point( 10, 10 ), *aBmp.get() );
227     }
228     */
229 
230     class VCL_DLLPUBLIC DeleteOnDeinitBase
231     {
232     public:
233         static void SAL_DLLPRIVATE ImplDeleteOnDeInit();
234         virtual ~DeleteOnDeinitBase();
235     protected:
236         static void addDeinitContainer( DeleteOnDeinitBase* i_pContainer );
237 
238         virtual void doCleanup() = 0;
239     };
240 
241     template < typename T >
242     class DeleteOnDeinit : public DeleteOnDeinitBase
243     {
244         T* m_pT;
245         virtual void doCleanup() { delete m_pT; m_pT = NULL; }
246     public:
247         DeleteOnDeinit( T* i_pT ) : m_pT( i_pT ) { addDeinitContainer( this ); }
248         virtual ~DeleteOnDeinit() {}
249 
250         // get contents
251         T* get() { return m_pT; }
252 
253         // set contents, returning old contents
254         // ownership is transfered !
255         T* set( T* i_pNew ) { T* pOld = m_pT; m_pT = i_pNew; return pOld; }
256     };
257 
258 	/** Similar to DeleteOnDeinit, the DeleteUnoReferenceOnDeinit
259         template class makes sure that a static UNO object is disposed
260         and released at the right time.
261 
262         Use like
263             static DeleteUnoReferenceOnDeinit<lang::XMultiServiceFactory>
264                 xStaticFactory (<create factory object>);
265             Reference<lang::XMultiServiceFactory> xFactory (xStaticFactory.get());
266             if (xFactory.is())
267                 <do something with xFactory>
268     */
269     template <typename I>
270     class DeleteUnoReferenceOnDeinit : public ::vcl::DeleteOnDeinitBase
271     {
272         ::com::sun::star::uno::Reference<I> m_xI;
273         virtual void doCleanup() { set(NULL); }
274     public:
275         DeleteUnoReferenceOnDeinit(const ::com::sun::star::uno::Reference<I>& r_xI ) : m_xI( r_xI ) {
276             addDeinitContainer( this ); }
277         virtual ~DeleteUnoReferenceOnDeinit() {}
278 
279         ::com::sun::star::uno::Reference<I> get (void) { return m_xI; }
280 
281         void set (const ::com::sun::star::uno::Reference<I>& r_xNew )
282         {
283             ::com::sun::star::uno::Reference< ::com::sun::star::lang::XComponent> xComponent (m_xI, ::com::sun::star::uno::UNO_QUERY);
284 			m_xI = r_xNew;
285             if (xComponent.is()) try
286 			{
287                 xComponent->dispose();
288 			}
289 			catch( ::com::sun::star::uno::Exception& )
290 			{
291 			}
292         }
293     };
294 }
295 
296 #endif
297 
298