1*b1cdbd2cSJim Jagielski/**************************************************************
2*b1cdbd2cSJim Jagielski *
3*b1cdbd2cSJim Jagielski * Licensed to the Apache Software Foundation (ASF) under one
4*b1cdbd2cSJim Jagielski * or more contributor license agreements.  See the NOTICE file
5*b1cdbd2cSJim Jagielski * distributed with this work for additional information
6*b1cdbd2cSJim Jagielski * regarding copyright ownership.  The ASF licenses this file
7*b1cdbd2cSJim Jagielski * to you under the Apache License, Version 2.0 (the
8*b1cdbd2cSJim Jagielski * "License"); you may not use this file except in compliance
9*b1cdbd2cSJim Jagielski * with the License.  You may obtain a copy of the License at
10*b1cdbd2cSJim Jagielski *
11*b1cdbd2cSJim Jagielski *   http://www.apache.org/licenses/LICENSE-2.0
12*b1cdbd2cSJim Jagielski *
13*b1cdbd2cSJim Jagielski * Unless required by applicable law or agreed to in writing,
14*b1cdbd2cSJim Jagielski * software distributed under the License is distributed on an
15*b1cdbd2cSJim Jagielski * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16*b1cdbd2cSJim Jagielski * KIND, either express or implied.  See the License for the
17*b1cdbd2cSJim Jagielski * specific language governing permissions and limitations
18*b1cdbd2cSJim Jagielski * under the License.
19*b1cdbd2cSJim Jagielski *
20*b1cdbd2cSJim Jagielski *************************************************************/
21*b1cdbd2cSJim Jagielski
22*b1cdbd2cSJim Jagielski
23*b1cdbd2cSJim Jagielski#ifndef __com_sun_star_geometry_AffineMatrix3D_idl__
24*b1cdbd2cSJim Jagielski#define __com_sun_star_geometry_AffineMatrix3D_idl__
25*b1cdbd2cSJim Jagielski
26*b1cdbd2cSJim Jagielskimodule com {  module sun {  module star {  module geometry {
27*b1cdbd2cSJim Jagielski
28*b1cdbd2cSJim Jagielski/** This structure defines a 3 by 4 affine matrix.<p>
29*b1cdbd2cSJim Jagielski
30*b1cdbd2cSJim Jagielski    The matrix defined by this structure constitutes an affine mapping
31*b1cdbd2cSJim Jagielski    of a point in 3D to another point in 3D. The last line of a
32*b1cdbd2cSJim Jagielski    complete 4 by 4 matrix is omitted, since it is implicitely assumed
33*b1cdbd2cSJim Jagielski    to be [0,0,0,1].<p>
34*b1cdbd2cSJim Jagielski
35*b1cdbd2cSJim Jagielski    An affine mapping, as performed by this matrix, can be written out
36*b1cdbd2cSJim Jagielski    as follows, where <code>xs, ys</code> and <code>zs</code> are the source, and
37*b1cdbd2cSJim Jagielski    <code>xd, yd</code> and <code>zd</code> the corresponding result coordinates:
38*b1cdbd2cSJim Jagielski
39*b1cdbd2cSJim Jagielski    <code>
40*b1cdbd2cSJim Jagielski    	xd = m00*xs + m01*ys + m02*zs + m03;
41*b1cdbd2cSJim Jagielski    	yd = m10*xs + m11*ys + m12*zs + m13;
42*b1cdbd2cSJim Jagielski    	zd = m20*xs + m21*ys + m22*zs + m23;
43*b1cdbd2cSJim Jagielski    </code><p>
44*b1cdbd2cSJim Jagielski
45*b1cdbd2cSJim Jagielski    Thus, in common matrix language, with M being the
46*b1cdbd2cSJim Jagielski    <type>AffineMatrix3D</type> and vs=[xs,ys,zs]^T, vd=[xd,yd,zd]^T two 3D
47*b1cdbd2cSJim Jagielski    vectors, the affine transformation is written as
48*b1cdbd2cSJim Jagielski    vd=M*vs. Concatenation of transformations amounts to
49*b1cdbd2cSJim Jagielski    multiplication of matrices, i.e. a translation, given by T,
50*b1cdbd2cSJim Jagielski    followed by a rotation, given by R, is expressed as vd=R*(T*vs) in
51*b1cdbd2cSJim Jagielski    the above notation. Since matrix multiplication is associative,
52*b1cdbd2cSJim Jagielski    this can be shortened to vd=(R*T)*vs=M'*vs. Therefore, a set of
53*b1cdbd2cSJim Jagielski    consecutive transformations can be accumulated into a single
54*b1cdbd2cSJim Jagielski    AffineMatrix3D, by multiplying the current transformation with the
55*b1cdbd2cSJim Jagielski    additional transformation from the left.<p>
56*b1cdbd2cSJim Jagielski
57*b1cdbd2cSJim Jagielski    Due to this transformational approach, all geometry data types are
58*b1cdbd2cSJim Jagielski    points in abstract integer or real coordinate spaces, without any
59*b1cdbd2cSJim Jagielski    physical dimensions attached to them. This physical measurement
60*b1cdbd2cSJim Jagielski    units are typically only added when using these data types to
61*b1cdbd2cSJim Jagielski    render something onto a physical output device. For 3D coordinates
62*b1cdbd2cSJim Jagielski	there is also a projection from 3D to 2D device coordiantes needed.
63*b1cdbd2cSJim Jagielski	Only then the total transformation matrix (oncluding projection to 2D)
64*b1cdbd2cSJim Jagielski	and the device resolution determine the actual measurement unit in 3D.<p>
65*b1cdbd2cSJim Jagielski
66*b1cdbd2cSJim Jagielski    @since OpenOffice 2.0
67*b1cdbd2cSJim Jagielski */
68*b1cdbd2cSJim Jagielskistruct AffineMatrix3D
69*b1cdbd2cSJim Jagielski{
70*b1cdbd2cSJim Jagielski    /// The top, left matrix entry.
71*b1cdbd2cSJim Jagielski    double m00;
72*b1cdbd2cSJim Jagielski
73*b1cdbd2cSJim Jagielski    /// The top, left middle matrix entry.
74*b1cdbd2cSJim Jagielski    double m01;
75*b1cdbd2cSJim Jagielski
76*b1cdbd2cSJim Jagielski    /// The top, right middle matrix entry.
77*b1cdbd2cSJim Jagielski    double m02;
78*b1cdbd2cSJim Jagielski
79*b1cdbd2cSJim Jagielski    /// The top, right matrix entry.
80*b1cdbd2cSJim Jagielski    double m03;
81*b1cdbd2cSJim Jagielski
82*b1cdbd2cSJim Jagielski    /// The middle, left matrix entry.
83*b1cdbd2cSJim Jagielski    double m10;
84*b1cdbd2cSJim Jagielski
85*b1cdbd2cSJim Jagielski    /// The middle, middle left matrix entry.
86*b1cdbd2cSJim Jagielski    double m11;
87*b1cdbd2cSJim Jagielski
88*b1cdbd2cSJim Jagielski    /// The middle, middle right matrix entry.
89*b1cdbd2cSJim Jagielski    double m12;
90*b1cdbd2cSJim Jagielski
91*b1cdbd2cSJim Jagielski    /// The middle, right matrix entry.
92*b1cdbd2cSJim Jagielski    double m13;
93*b1cdbd2cSJim Jagielski
94*b1cdbd2cSJim Jagielski    /// The bottom, left matrix entry.
95*b1cdbd2cSJim Jagielski    double m20;
96*b1cdbd2cSJim Jagielski
97*b1cdbd2cSJim Jagielski    /// The bottom, middle left matrix entry.
98*b1cdbd2cSJim Jagielski    double m21;
99*b1cdbd2cSJim Jagielski
100*b1cdbd2cSJim Jagielski    /// The bottom, middle right matrix entry.
101*b1cdbd2cSJim Jagielski    double m22;
102*b1cdbd2cSJim Jagielski
103*b1cdbd2cSJim Jagielski    /// The bottom, right matrix entry.
104*b1cdbd2cSJim Jagielski    double m23;
105*b1cdbd2cSJim Jagielski};
106*b1cdbd2cSJim Jagielski
107*b1cdbd2cSJim Jagielski}; }; }; };
108*b1cdbd2cSJim Jagielski
109*b1cdbd2cSJim Jagielski#endif
110