xref: /aoo42x/main/basegfx/source/workbench/gauss.hxx (revision cdf0e10c)
1*cdf0e10cSrcweir /*************************************************************************
2*cdf0e10cSrcweir  *
3*cdf0e10cSrcweir  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4*cdf0e10cSrcweir  *
5*cdf0e10cSrcweir  * Copyright 2000, 2010 Oracle and/or its affiliates.
6*cdf0e10cSrcweir  *
7*cdf0e10cSrcweir  * OpenOffice.org - a multi-platform office productivity suite
8*cdf0e10cSrcweir  *
9*cdf0e10cSrcweir  * This file is part of OpenOffice.org.
10*cdf0e10cSrcweir  *
11*cdf0e10cSrcweir  * OpenOffice.org is free software: you can redistribute it and/or modify
12*cdf0e10cSrcweir  * it under the terms of the GNU Lesser General Public License version 3
13*cdf0e10cSrcweir  * only, as published by the Free Software Foundation.
14*cdf0e10cSrcweir  *
15*cdf0e10cSrcweir  * OpenOffice.org is distributed in the hope that it will be useful,
16*cdf0e10cSrcweir  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17*cdf0e10cSrcweir  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18*cdf0e10cSrcweir  * GNU Lesser General Public License version 3 for more details
19*cdf0e10cSrcweir  * (a copy is included in the LICENSE file that accompanied this code).
20*cdf0e10cSrcweir  *
21*cdf0e10cSrcweir  * You should have received a copy of the GNU Lesser General Public License
22*cdf0e10cSrcweir  * version 3 along with OpenOffice.org.  If not, see
23*cdf0e10cSrcweir  * <http://www.openoffice.org/license.html>
24*cdf0e10cSrcweir  * for a copy of the LGPLv3 License.
25*cdf0e10cSrcweir  *
26*cdf0e10cSrcweir  ************************************************************************/
27*cdf0e10cSrcweir 
28*cdf0e10cSrcweir /** This method eliminates elements below main diagonal in the given
29*cdf0e10cSrcweir     matrix by gaussian elimination.
30*cdf0e10cSrcweir 
31*cdf0e10cSrcweir     @param matrix
32*cdf0e10cSrcweir     The matrix to operate on. Last column is the result vector (right
33*cdf0e10cSrcweir     hand side of the linear equation). After successful termination,
34*cdf0e10cSrcweir     the matrix is upper triangular. The matrix is expected to be in
35*cdf0e10cSrcweir     row major order.
36*cdf0e10cSrcweir 
37*cdf0e10cSrcweir     @param rows
38*cdf0e10cSrcweir     Number of rows in matrix
39*cdf0e10cSrcweir 
40*cdf0e10cSrcweir     @param cols
41*cdf0e10cSrcweir     Number of columns in matrix
42*cdf0e10cSrcweir 
43*cdf0e10cSrcweir     @param minPivot
44*cdf0e10cSrcweir     If the pivot element gets lesser than minPivot, this method fails,
45*cdf0e10cSrcweir     otherwise, elimination succeeds and true is returned.
46*cdf0e10cSrcweir 
47*cdf0e10cSrcweir     @return true, if elimination succeeded.
48*cdf0e10cSrcweir  */
49*cdf0e10cSrcweir template <class Matrix, typename BaseType>
50*cdf0e10cSrcweir bool eliminate( 	Matrix&			matrix,
51*cdf0e10cSrcweir                     int				rows,
52*cdf0e10cSrcweir                     int				cols,
53*cdf0e10cSrcweir                     const BaseType& minPivot	)
54*cdf0e10cSrcweir {
55*cdf0e10cSrcweir 	BaseType	temp;
56*cdf0e10cSrcweir 	int			max, i, j, k;	/* *must* be signed, when looping like: j>=0 ! */
57*cdf0e10cSrcweir 
58*cdf0e10cSrcweir 	/* eliminate below main diagonal */
59*cdf0e10cSrcweir 	for(i=0; i<cols-1; ++i)
60*cdf0e10cSrcweir 	{
61*cdf0e10cSrcweir 		/* find best pivot */
62*cdf0e10cSrcweir 		max = i;
63*cdf0e10cSrcweir 		for(j=i+1; j<rows; ++j)
64*cdf0e10cSrcweir 			if( fabs(matrix[ j*cols + i ]) > fabs(matrix[ max*cols + i ]) )
65*cdf0e10cSrcweir 				max = j;
66*cdf0e10cSrcweir 
67*cdf0e10cSrcweir 		/* check pivot value */
68*cdf0e10cSrcweir 		if( fabs(matrix[ max*cols + i ]) < minPivot )
69*cdf0e10cSrcweir 			return false;	/* pivot too small! */
70*cdf0e10cSrcweir 
71*cdf0e10cSrcweir 		/* interchange rows 'max' and 'i' */
72*cdf0e10cSrcweir 		for(k=0; k<cols; ++k)
73*cdf0e10cSrcweir 		{
74*cdf0e10cSrcweir 			temp = matrix[ i*cols + k ];
75*cdf0e10cSrcweir 			matrix[ i*cols + k ] = matrix[ max*cols + k ];
76*cdf0e10cSrcweir 			matrix[ max*cols + k ] = temp;
77*cdf0e10cSrcweir 		}
78*cdf0e10cSrcweir 
79*cdf0e10cSrcweir 		/* eliminate column */
80*cdf0e10cSrcweir 		for(j=i+1; j<rows; ++j)
81*cdf0e10cSrcweir 			for(k=cols-1; k>=i; --k)
82*cdf0e10cSrcweir 				matrix[ j*cols + k ] -= matrix[ i*cols + k ] *
83*cdf0e10cSrcweir 					matrix[ j*cols + i ] / matrix[ i*cols + i ];
84*cdf0e10cSrcweir 	}
85*cdf0e10cSrcweir 
86*cdf0e10cSrcweir 	/* everything went well */
87*cdf0e10cSrcweir 	return true;
88*cdf0e10cSrcweir }
89*cdf0e10cSrcweir 
90*cdf0e10cSrcweir 
91*cdf0e10cSrcweir /** Retrieve solution vector of linear system by substituting backwards.
92*cdf0e10cSrcweir 
93*cdf0e10cSrcweir 	This operation _relies_ on the previous successful
94*cdf0e10cSrcweir     application of eliminate()!
95*cdf0e10cSrcweir 
96*cdf0e10cSrcweir     @param matrix
97*cdf0e10cSrcweir     Matrix in upper diagonal form, as e.g. generated by eliminate()
98*cdf0e10cSrcweir 
99*cdf0e10cSrcweir     @param rows
100*cdf0e10cSrcweir     Number of rows in matrix
101*cdf0e10cSrcweir 
102*cdf0e10cSrcweir     @param cols
103*cdf0e10cSrcweir     Number of columns in matrix
104*cdf0e10cSrcweir 
105*cdf0e10cSrcweir     @param result
106*cdf0e10cSrcweir     Result vector. Given matrix must have space for one column (rows entries).
107*cdf0e10cSrcweir 
108*cdf0e10cSrcweir     @return true, if back substitution was possible (i.e. no division
109*cdf0e10cSrcweir     by zero occured).
110*cdf0e10cSrcweir  */
111*cdf0e10cSrcweir template <class Matrix, class Vector, typename BaseType>
112*cdf0e10cSrcweir bool substitute(	const Matrix&	matrix,
113*cdf0e10cSrcweir                     int				rows,
114*cdf0e10cSrcweir                     int				cols,
115*cdf0e10cSrcweir                     Vector&			result	)
116*cdf0e10cSrcweir {
117*cdf0e10cSrcweir 	BaseType	temp;
118*cdf0e10cSrcweir 	int			j,k;	/* *must* be signed, when looping like: j>=0 ! */
119*cdf0e10cSrcweir 
120*cdf0e10cSrcweir 	/* substitute backwards */
121*cdf0e10cSrcweir 	for(j=rows-1; j>=0; --j)
122*cdf0e10cSrcweir 	{
123*cdf0e10cSrcweir 		temp = 0.0;
124*cdf0e10cSrcweir 		for(k=j+1; k<cols-1; ++k)
125*cdf0e10cSrcweir 			temp += matrix[ j*cols + k ] * result[k];
126*cdf0e10cSrcweir 
127*cdf0e10cSrcweir 		if( matrix[ j*cols + j ] == 0.0 )
128*cdf0e10cSrcweir 			return false;	/* imminent division by zero! */
129*cdf0e10cSrcweir 
130*cdf0e10cSrcweir 		result[j] = (matrix[ j*cols + cols-1 ] - temp) / matrix[ j*cols + j ];
131*cdf0e10cSrcweir 	}
132*cdf0e10cSrcweir 
133*cdf0e10cSrcweir 	/* everything went well */
134*cdf0e10cSrcweir 	return true;
135*cdf0e10cSrcweir }
136*cdf0e10cSrcweir 
137*cdf0e10cSrcweir 
138*cdf0e10cSrcweir /** This method determines solution of given linear system, if any
139*cdf0e10cSrcweir 
140*cdf0e10cSrcweir 	This is a wrapper for eliminate and substitute, given matrix must
141*cdf0e10cSrcweir 	contain right side of equation as the last column.
142*cdf0e10cSrcweir 
143*cdf0e10cSrcweir     @param matrix
144*cdf0e10cSrcweir     The matrix to operate on. Last column is the result vector (right
145*cdf0e10cSrcweir     hand side of the linear equation). After successful termination,
146*cdf0e10cSrcweir     the matrix is upper triangular. The matrix is expected to be in
147*cdf0e10cSrcweir     row major order.
148*cdf0e10cSrcweir 
149*cdf0e10cSrcweir     @param rows
150*cdf0e10cSrcweir     Number of rows in matrix
151*cdf0e10cSrcweir 
152*cdf0e10cSrcweir     @param cols
153*cdf0e10cSrcweir     Number of columns in matrix
154*cdf0e10cSrcweir 
155*cdf0e10cSrcweir     @param minPivot
156*cdf0e10cSrcweir     If the pivot element gets lesser than minPivot, this method fails,
157*cdf0e10cSrcweir     otherwise, elimination succeeds and true is returned.
158*cdf0e10cSrcweir 
159*cdf0e10cSrcweir     @return true, if elimination succeeded.
160*cdf0e10cSrcweir  */
161*cdf0e10cSrcweir template <class Matrix, class Vector, typename BaseType>
162*cdf0e10cSrcweir bool solve(	Matrix&		matrix,
163*cdf0e10cSrcweir             int			rows,
164*cdf0e10cSrcweir             int			cols,
165*cdf0e10cSrcweir             Vector&		result,
166*cdf0e10cSrcweir             BaseType	minPivot	)
167*cdf0e10cSrcweir {
168*cdf0e10cSrcweir 	if( eliminate<Matrix,BaseType>(matrix, rows, cols, minPivot) )
169*cdf0e10cSrcweir 		return substitute<Matrix,Vector,BaseType>(matrix, rows, cols, result);
170*cdf0e10cSrcweir 
171*cdf0e10cSrcweir 	return false;
172*cdf0e10cSrcweir }
173