xref: /trunk/main/basegfx/source/curve/b2dcubicbezier.cxx (revision 42fb6e95e2f95f39ff1eee3336bd998cf8ae20a1)
109dbbe93SAndrew Rist /**************************************************************
2cdf0e10cSrcweir  *
309dbbe93SAndrew Rist  * Licensed to the Apache Software Foundation (ASF) under one
409dbbe93SAndrew Rist  * or more contributor license agreements.  See the NOTICE file
509dbbe93SAndrew Rist  * distributed with this work for additional information
609dbbe93SAndrew Rist  * regarding copyright ownership.  The ASF licenses this file
709dbbe93SAndrew Rist  * to you under the Apache License, Version 2.0 (the
809dbbe93SAndrew Rist  * "License"); you may not use this file except in compliance
909dbbe93SAndrew Rist  * with the License.  You may obtain a copy of the License at
10cdf0e10cSrcweir  *
1109dbbe93SAndrew Rist  *   http://www.apache.org/licenses/LICENSE-2.0
12cdf0e10cSrcweir  *
1309dbbe93SAndrew Rist  * Unless required by applicable law or agreed to in writing,
1409dbbe93SAndrew Rist  * software distributed under the License is distributed on an
1509dbbe93SAndrew Rist  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
1609dbbe93SAndrew Rist  * KIND, either express or implied.  See the License for the
1709dbbe93SAndrew Rist  * specific language governing permissions and limitations
1809dbbe93SAndrew Rist  * under the License.
19cdf0e10cSrcweir  *
2009dbbe93SAndrew Rist  *************************************************************/
2109dbbe93SAndrew Rist 
22cdf0e10cSrcweir // MARKER(update_precomp.py): autogen include statement, do not remove
23cdf0e10cSrcweir #include "precompiled_basegfx.hxx"
24cdf0e10cSrcweir #include <basegfx/curve/b2dcubicbezier.hxx>
25cdf0e10cSrcweir #include <basegfx/vector/b2dvector.hxx>
26cdf0e10cSrcweir #include <basegfx/polygon/b2dpolygon.hxx>
27cdf0e10cSrcweir #include <basegfx/numeric/ftools.hxx>
28cdf0e10cSrcweir 
29cdf0e10cSrcweir #include <limits>
30cdf0e10cSrcweir 
31cdf0e10cSrcweir // #i37443#
32cdf0e10cSrcweir #define FACTOR_FOR_UNSHARPEN    (1.6)
33cdf0e10cSrcweir #ifdef DBG_UTIL
34cdf0e10cSrcweir static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN;
35cdf0e10cSrcweir #endif
36cdf0e10cSrcweir 
37cdf0e10cSrcweir namespace basegfx
38cdf0e10cSrcweir {
39cdf0e10cSrcweir     namespace
40cdf0e10cSrcweir     {
ImpSubDivAngle(const B2DPoint & rfPA,const B2DPoint & rfEA,const B2DPoint & rfEB,const B2DPoint & rfPB,B2DPolygon & rTarget,double fAngleBound,bool bAllowUnsharpen,sal_uInt16 nMaxRecursionDepth)41cdf0e10cSrcweir         void ImpSubDivAngle(
42cdf0e10cSrcweir             const B2DPoint& rfPA,           // start point
43cdf0e10cSrcweir             const B2DPoint& rfEA,           // edge on A
44cdf0e10cSrcweir             const B2DPoint& rfEB,           // edge on B
45cdf0e10cSrcweir             const B2DPoint& rfPB,           // end point
46cdf0e10cSrcweir             B2DPolygon& rTarget,            // target polygon
47cdf0e10cSrcweir             double fAngleBound,             // angle bound in [0.0 .. 2PI]
48cdf0e10cSrcweir             bool bAllowUnsharpen,           // #i37443# allow the criteria to get unsharp in recursions
49cdf0e10cSrcweir             sal_uInt16 nMaxRecursionDepth)  // endless loop protection
50cdf0e10cSrcweir         {
51cdf0e10cSrcweir             if(nMaxRecursionDepth)
52cdf0e10cSrcweir             {
53cdf0e10cSrcweir                 // do angle test
54cdf0e10cSrcweir                 B2DVector aLeft(rfEA - rfPA);
55cdf0e10cSrcweir                 B2DVector aRight(rfEB - rfPB);
56cdf0e10cSrcweir 
57cdf0e10cSrcweir                 // #i72104#
58cdf0e10cSrcweir                 if(aLeft.equalZero())
59cdf0e10cSrcweir                 {
60cdf0e10cSrcweir                     aLeft = rfEB - rfPA;
61cdf0e10cSrcweir                 }
62cdf0e10cSrcweir 
63cdf0e10cSrcweir                 if(aRight.equalZero())
64cdf0e10cSrcweir                 {
65cdf0e10cSrcweir                     aRight = rfEA - rfPB;
66cdf0e10cSrcweir                 }
67cdf0e10cSrcweir 
68cdf0e10cSrcweir                 const double fCurrentAngle(aLeft.angle(aRight));
69cdf0e10cSrcweir 
70cdf0e10cSrcweir                 if(fabs(fCurrentAngle) > (F_PI - fAngleBound))
71cdf0e10cSrcweir                 {
72cdf0e10cSrcweir                     // end recursion
73cdf0e10cSrcweir                     nMaxRecursionDepth = 0;
74cdf0e10cSrcweir                 }
75cdf0e10cSrcweir                 else
76cdf0e10cSrcweir                 {
77cdf0e10cSrcweir                     if(bAllowUnsharpen)
78cdf0e10cSrcweir                     {
79cdf0e10cSrcweir                         // #i37443# unsharpen criteria
80cdf0e10cSrcweir #ifdef DBG_UTIL
81cdf0e10cSrcweir                         fAngleBound *= fMultFactUnsharpen;
82cdf0e10cSrcweir #else
83cdf0e10cSrcweir                         fAngleBound *= FACTOR_FOR_UNSHARPEN;
84cdf0e10cSrcweir #endif
85cdf0e10cSrcweir                     }
86cdf0e10cSrcweir                 }
87cdf0e10cSrcweir             }
88cdf0e10cSrcweir 
89cdf0e10cSrcweir             if(nMaxRecursionDepth)
90cdf0e10cSrcweir             {
91cdf0e10cSrcweir                 // divide at 0.5
92cdf0e10cSrcweir                 const B2DPoint aS1L(average(rfPA, rfEA));
93cdf0e10cSrcweir                 const B2DPoint aS1C(average(rfEA, rfEB));
94cdf0e10cSrcweir                 const B2DPoint aS1R(average(rfEB, rfPB));
95cdf0e10cSrcweir                 const B2DPoint aS2L(average(aS1L, aS1C));
96cdf0e10cSrcweir                 const B2DPoint aS2R(average(aS1C, aS1R));
97cdf0e10cSrcweir                 const B2DPoint aS3C(average(aS2L, aS2R));
98cdf0e10cSrcweir 
99cdf0e10cSrcweir                 // left recursion
100cdf0e10cSrcweir                 ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
101cdf0e10cSrcweir 
102cdf0e10cSrcweir                 // right recursion
103cdf0e10cSrcweir                 ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
104cdf0e10cSrcweir             }
105cdf0e10cSrcweir             else
106cdf0e10cSrcweir             {
107cdf0e10cSrcweir                 rTarget.append(rfPB);
108cdf0e10cSrcweir             }
109cdf0e10cSrcweir         }
110cdf0e10cSrcweir 
ImpSubDivAngleStart(const B2DPoint & rfPA,const B2DPoint & rfEA,const B2DPoint & rfEB,const B2DPoint & rfPB,B2DPolygon & rTarget,const double & rfAngleBound,bool bAllowUnsharpen)111cdf0e10cSrcweir         void ImpSubDivAngleStart(
112cdf0e10cSrcweir             const B2DPoint& rfPA,           // start point
113cdf0e10cSrcweir             const B2DPoint& rfEA,           // edge on A
114cdf0e10cSrcweir             const B2DPoint& rfEB,           // edge on B
115cdf0e10cSrcweir             const B2DPoint& rfPB,           // end point
116cdf0e10cSrcweir             B2DPolygon& rTarget,            // target polygon
117cdf0e10cSrcweir             const double& rfAngleBound,     // angle bound in [0.0 .. 2PI]
118cdf0e10cSrcweir             bool bAllowUnsharpen)           // #i37443# allow the criteria to get unsharp in recursions
119cdf0e10cSrcweir         {
120cdf0e10cSrcweir             sal_uInt16 nMaxRecursionDepth(8);
121cdf0e10cSrcweir             const B2DVector aLeft(rfEA - rfPA);
122cdf0e10cSrcweir             const B2DVector aRight(rfEB - rfPB);
123cdf0e10cSrcweir             bool bLeftEqualZero(aLeft.equalZero());
124cdf0e10cSrcweir             bool bRightEqualZero(aRight.equalZero());
125cdf0e10cSrcweir             bool bAllParallel(false);
126cdf0e10cSrcweir 
127cdf0e10cSrcweir             if(bLeftEqualZero && bRightEqualZero)
128cdf0e10cSrcweir             {
129cdf0e10cSrcweir                 nMaxRecursionDepth = 0;
130cdf0e10cSrcweir             }
131cdf0e10cSrcweir             else
132cdf0e10cSrcweir             {
133cdf0e10cSrcweir                 const B2DVector aBase(rfPB - rfPA);
134cdf0e10cSrcweir                 const bool bBaseEqualZero(aBase.equalZero()); // #i72104#
135cdf0e10cSrcweir 
136cdf0e10cSrcweir                 if(!bBaseEqualZero)
137cdf0e10cSrcweir                 {
138cdf0e10cSrcweir                     const bool bLeftParallel(bLeftEqualZero ? true : areParallel(aLeft, aBase));
139cdf0e10cSrcweir                     const bool bRightParallel(bRightEqualZero ? true : areParallel(aRight, aBase));
140cdf0e10cSrcweir 
141cdf0e10cSrcweir                     if(bLeftParallel && bRightParallel)
142cdf0e10cSrcweir                     {
143cdf0e10cSrcweir                         bAllParallel = true;
144cdf0e10cSrcweir 
145cdf0e10cSrcweir                         if(!bLeftEqualZero)
146cdf0e10cSrcweir                         {
147cdf0e10cSrcweir                             double fFactor;
148cdf0e10cSrcweir 
149cdf0e10cSrcweir                             if(fabs(aBase.getX()) > fabs(aBase.getY()))
150cdf0e10cSrcweir                             {
151cdf0e10cSrcweir                                 fFactor = aLeft.getX() / aBase.getX();
152cdf0e10cSrcweir                             }
153cdf0e10cSrcweir                             else
154cdf0e10cSrcweir                             {
155cdf0e10cSrcweir                                 fFactor = aLeft.getY() / aBase.getY();
156cdf0e10cSrcweir                             }
157cdf0e10cSrcweir 
158cdf0e10cSrcweir                             if(fFactor >= 0.0 && fFactor <= 1.0)
159cdf0e10cSrcweir                             {
160cdf0e10cSrcweir                                 bLeftEqualZero = true;
161cdf0e10cSrcweir                             }
162cdf0e10cSrcweir                         }
163cdf0e10cSrcweir 
164cdf0e10cSrcweir                         if(!bRightEqualZero)
165cdf0e10cSrcweir                         {
166cdf0e10cSrcweir                             double fFactor;
167cdf0e10cSrcweir 
168cdf0e10cSrcweir                             if(fabs(aBase.getX()) > fabs(aBase.getY()))
169cdf0e10cSrcweir                             {
170cdf0e10cSrcweir                                 fFactor = aRight.getX() / -aBase.getX();
171cdf0e10cSrcweir                             }
172cdf0e10cSrcweir                             else
173cdf0e10cSrcweir                             {
174cdf0e10cSrcweir                                 fFactor = aRight.getY() / -aBase.getY();
175cdf0e10cSrcweir                             }
176cdf0e10cSrcweir 
177cdf0e10cSrcweir                             if(fFactor >= 0.0 && fFactor <= 1.0)
178cdf0e10cSrcweir                             {
179cdf0e10cSrcweir                                 bRightEqualZero = true;
180cdf0e10cSrcweir                             }
181cdf0e10cSrcweir                         }
182cdf0e10cSrcweir 
183cdf0e10cSrcweir                         if(bLeftEqualZero && bRightEqualZero)
184cdf0e10cSrcweir                         {
185cdf0e10cSrcweir                             nMaxRecursionDepth = 0;
186cdf0e10cSrcweir                         }
187cdf0e10cSrcweir                     }
188cdf0e10cSrcweir                 }
189cdf0e10cSrcweir             }
190cdf0e10cSrcweir 
191cdf0e10cSrcweir             if(nMaxRecursionDepth)
192cdf0e10cSrcweir             {
193cdf0e10cSrcweir                 // divide at 0.5 ad test both edges for angle criteria
194cdf0e10cSrcweir                 const B2DPoint aS1L(average(rfPA, rfEA));
195cdf0e10cSrcweir                 const B2DPoint aS1C(average(rfEA, rfEB));
196cdf0e10cSrcweir                 const B2DPoint aS1R(average(rfEB, rfPB));
197cdf0e10cSrcweir                 const B2DPoint aS2L(average(aS1L, aS1C));
198cdf0e10cSrcweir                 const B2DPoint aS2R(average(aS1C, aS1R));
199cdf0e10cSrcweir                 const B2DPoint aS3C(average(aS2L, aS2R));
200cdf0e10cSrcweir 
201cdf0e10cSrcweir                 // test left
202cdf0e10cSrcweir                 bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero);
203cdf0e10cSrcweir                 if(!bAngleIsSmallerLeft)
204cdf0e10cSrcweir                 {
205cdf0e10cSrcweir                     const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104#
206cdf0e10cSrcweir                     const B2DVector aRightLeft(aS2L - aS3C);
207cdf0e10cSrcweir                     const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft));
208cdf0e10cSrcweir                     bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound));
209cdf0e10cSrcweir                 }
210cdf0e10cSrcweir 
211cdf0e10cSrcweir                 // test right
212cdf0e10cSrcweir                 bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero);
213cdf0e10cSrcweir                 if(!bAngleIsSmallerRight)
214cdf0e10cSrcweir                 {
215cdf0e10cSrcweir                     const B2DVector aLeftRight(aS2R - aS3C);
216cdf0e10cSrcweir                     const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104#
217cdf0e10cSrcweir                     const double fCurrentAngleRight(aLeftRight.angle(aRightRight));
218cdf0e10cSrcweir                     bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound));
219cdf0e10cSrcweir                 }
220cdf0e10cSrcweir 
221cdf0e10cSrcweir                 if(bAngleIsSmallerLeft && bAngleIsSmallerRight)
222cdf0e10cSrcweir                 {
223cdf0e10cSrcweir                     // no recursion necessary at all
224cdf0e10cSrcweir                     nMaxRecursionDepth = 0;
225cdf0e10cSrcweir                 }
226cdf0e10cSrcweir                 else
227cdf0e10cSrcweir                 {
228cdf0e10cSrcweir                     // left
229cdf0e10cSrcweir                     if(bAngleIsSmallerLeft)
230cdf0e10cSrcweir                     {
231cdf0e10cSrcweir                         rTarget.append(aS3C);
232cdf0e10cSrcweir                     }
233cdf0e10cSrcweir                     else
234cdf0e10cSrcweir                     {
235cdf0e10cSrcweir                         ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
236cdf0e10cSrcweir                     }
237cdf0e10cSrcweir 
238cdf0e10cSrcweir                     // right
239cdf0e10cSrcweir                     if(bAngleIsSmallerRight)
240cdf0e10cSrcweir                     {
241cdf0e10cSrcweir                         rTarget.append(rfPB);
242cdf0e10cSrcweir                     }
243cdf0e10cSrcweir                     else
244cdf0e10cSrcweir                     {
245cdf0e10cSrcweir                         ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
246cdf0e10cSrcweir                     }
247cdf0e10cSrcweir                 }
248cdf0e10cSrcweir             }
249cdf0e10cSrcweir 
250cdf0e10cSrcweir             if(!nMaxRecursionDepth)
251cdf0e10cSrcweir             {
252cdf0e10cSrcweir                 rTarget.append(rfPB);
253cdf0e10cSrcweir             }
254cdf0e10cSrcweir         }
255cdf0e10cSrcweir 
ImpSubDivDistance(const B2DPoint & rfPA,const B2DPoint & rfEA,const B2DPoint & rfEB,const B2DPoint & rfPB,B2DPolygon & rTarget,double fDistanceBound2,double fLastDistanceError2,sal_uInt16 nMaxRecursionDepth)256cdf0e10cSrcweir         void ImpSubDivDistance(
257cdf0e10cSrcweir             const B2DPoint& rfPA,           // start point
258cdf0e10cSrcweir             const B2DPoint& rfEA,           // edge on A
259cdf0e10cSrcweir             const B2DPoint& rfEB,           // edge on B
260cdf0e10cSrcweir             const B2DPoint& rfPB,           // end point
261cdf0e10cSrcweir             B2DPolygon& rTarget,            // target polygon
262cdf0e10cSrcweir             double fDistanceBound2,         // quadratic distance criteria
263cdf0e10cSrcweir             double fLastDistanceError2,     // the last quadratic distance error
264cdf0e10cSrcweir             sal_uInt16 nMaxRecursionDepth)  // endless loop protection
265cdf0e10cSrcweir         {
266cdf0e10cSrcweir             if(nMaxRecursionDepth)
267cdf0e10cSrcweir             {
268cdf0e10cSrcweir                 // decide if another recursion is needed. If not, set
269cdf0e10cSrcweir                 // nMaxRecursionDepth to zero
270cdf0e10cSrcweir 
271cdf0e10cSrcweir                 // Perform bezier flatness test (lecture notes from R. Schaback,
272cdf0e10cSrcweir                 // Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
273cdf0e10cSrcweir                 //
274cdf0e10cSrcweir                 // ||P(t) - L(t)|| <= max     ||b_j - b_0 - j/n(b_n - b_0)||
275cdf0e10cSrcweir                 //                    0<=j<=n
276cdf0e10cSrcweir                 //
277cdf0e10cSrcweir                 // What is calculated here is an upper bound to the distance from
278cdf0e10cSrcweir                 // a line through b_0 and b_3 (rfPA and P4 in our notation) and the
279cdf0e10cSrcweir                 // curve. We can drop 0 and n from the running indices, since the
280cdf0e10cSrcweir                 // argument of max becomes zero for those cases.
281cdf0e10cSrcweir                 const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX()));
282cdf0e10cSrcweir                 const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY()));
283cdf0e10cSrcweir                 const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX()));
284cdf0e10cSrcweir                 const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY()));
285cdf0e10cSrcweir                 const double fDistanceError2(::std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y));
286cdf0e10cSrcweir 
287cdf0e10cSrcweir                 // stop if error measure does not improve anymore. This is a
288cdf0e10cSrcweir                 // safety guard against floating point inaccuracies.
289cdf0e10cSrcweir                 // stop if distance from line is guaranteed to be bounded by d
290cdf0e10cSrcweir                 const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2);
291cdf0e10cSrcweir 
292cdf0e10cSrcweir                 if(bFurtherDivision)
293cdf0e10cSrcweir                 {
294cdf0e10cSrcweir                     // remember last error value
295cdf0e10cSrcweir                     fLastDistanceError2 = fDistanceError2;
296cdf0e10cSrcweir                 }
297cdf0e10cSrcweir                 else
298cdf0e10cSrcweir                 {
299cdf0e10cSrcweir                     // stop recustion
300cdf0e10cSrcweir                     nMaxRecursionDepth = 0;
301cdf0e10cSrcweir                 }
302cdf0e10cSrcweir             }
303cdf0e10cSrcweir 
304cdf0e10cSrcweir             if(nMaxRecursionDepth)
305cdf0e10cSrcweir             {
306cdf0e10cSrcweir                 // divide at 0.5
307cdf0e10cSrcweir                 const B2DPoint aS1L(average(rfPA, rfEA));
308cdf0e10cSrcweir                 const B2DPoint aS1C(average(rfEA, rfEB));
309cdf0e10cSrcweir                 const B2DPoint aS1R(average(rfEB, rfPB));
310cdf0e10cSrcweir                 const B2DPoint aS2L(average(aS1L, aS1C));
311cdf0e10cSrcweir                 const B2DPoint aS2R(average(aS1C, aS1R));
312cdf0e10cSrcweir                 const B2DPoint aS3C(average(aS2L, aS2R));
313cdf0e10cSrcweir 
314cdf0e10cSrcweir                 // left recursion
315cdf0e10cSrcweir                 ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
316cdf0e10cSrcweir 
317cdf0e10cSrcweir                 // right recursion
318cdf0e10cSrcweir                 ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
319cdf0e10cSrcweir             }
320cdf0e10cSrcweir             else
321cdf0e10cSrcweir             {
322cdf0e10cSrcweir                 rTarget.append(rfPB);
323cdf0e10cSrcweir             }
324cdf0e10cSrcweir         }
325cdf0e10cSrcweir     } // end of anonymous namespace
326cdf0e10cSrcweir } // end of namespace basegfx
327cdf0e10cSrcweir 
328cdf0e10cSrcweir namespace basegfx
329cdf0e10cSrcweir {
B2DCubicBezier(const B2DCubicBezier & rBezier)330cdf0e10cSrcweir     B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier& rBezier)
331cdf0e10cSrcweir     :   maStartPoint(rBezier.maStartPoint),
332cdf0e10cSrcweir         maEndPoint(rBezier.maEndPoint),
333cdf0e10cSrcweir         maControlPointA(rBezier.maControlPointA),
334cdf0e10cSrcweir         maControlPointB(rBezier.maControlPointB)
335cdf0e10cSrcweir     {
336cdf0e10cSrcweir     }
337cdf0e10cSrcweir 
B2DCubicBezier()338cdf0e10cSrcweir     B2DCubicBezier::B2DCubicBezier()
339cdf0e10cSrcweir     {
340cdf0e10cSrcweir     }
341cdf0e10cSrcweir 
B2DCubicBezier(const B2DPoint & rStart,const B2DPoint & rEnd)342cdf0e10cSrcweir     B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rEnd)
343cdf0e10cSrcweir     :   maStartPoint(rStart),
344cdf0e10cSrcweir         maEndPoint(rEnd),
345cdf0e10cSrcweir         maControlPointA(rStart),
346cdf0e10cSrcweir         maControlPointB(rEnd)
347cdf0e10cSrcweir     {
348cdf0e10cSrcweir     }
349cdf0e10cSrcweir 
B2DCubicBezier(const B2DPoint & rStart,const B2DPoint & rControlPointA,const B2DPoint & rControlPointB,const B2DPoint & rEnd)350cdf0e10cSrcweir     B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd)
351cdf0e10cSrcweir     :   maStartPoint(rStart),
352cdf0e10cSrcweir         maEndPoint(rEnd),
353cdf0e10cSrcweir         maControlPointA(rControlPointA),
354cdf0e10cSrcweir         maControlPointB(rControlPointB)
355cdf0e10cSrcweir     {
356cdf0e10cSrcweir     }
357cdf0e10cSrcweir 
~B2DCubicBezier()358cdf0e10cSrcweir     B2DCubicBezier::~B2DCubicBezier()
359cdf0e10cSrcweir     {
360cdf0e10cSrcweir     }
361cdf0e10cSrcweir 
362cdf0e10cSrcweir     // assignment operator
operator =(const B2DCubicBezier & rBezier)363cdf0e10cSrcweir     B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier& rBezier)
364cdf0e10cSrcweir     {
365cdf0e10cSrcweir         maStartPoint = rBezier.maStartPoint;
366cdf0e10cSrcweir         maEndPoint = rBezier.maEndPoint;
367cdf0e10cSrcweir         maControlPointA = rBezier.maControlPointA;
368cdf0e10cSrcweir         maControlPointB = rBezier.maControlPointB;
369cdf0e10cSrcweir 
370cdf0e10cSrcweir         return *this;
371cdf0e10cSrcweir     }
372cdf0e10cSrcweir 
373cdf0e10cSrcweir     // compare operators
operator ==(const B2DCubicBezier & rBezier) const374cdf0e10cSrcweir     bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const
375cdf0e10cSrcweir     {
376cdf0e10cSrcweir         return (
377cdf0e10cSrcweir             maStartPoint == rBezier.maStartPoint
378cdf0e10cSrcweir             && maEndPoint == rBezier.maEndPoint
379cdf0e10cSrcweir             && maControlPointA == rBezier.maControlPointA
380cdf0e10cSrcweir             && maControlPointB == rBezier.maControlPointB
381cdf0e10cSrcweir         );
382cdf0e10cSrcweir     }
383cdf0e10cSrcweir 
operator !=(const B2DCubicBezier & rBezier) const384cdf0e10cSrcweir     bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const
385cdf0e10cSrcweir     {
386cdf0e10cSrcweir         return (
387cdf0e10cSrcweir             maStartPoint != rBezier.maStartPoint
388cdf0e10cSrcweir             || maEndPoint != rBezier.maEndPoint
389cdf0e10cSrcweir             || maControlPointA != rBezier.maControlPointA
390cdf0e10cSrcweir             || maControlPointB != rBezier.maControlPointB
391cdf0e10cSrcweir         );
392cdf0e10cSrcweir     }
393cdf0e10cSrcweir 
equal(const B2DCubicBezier & rBezier) const394cdf0e10cSrcweir     bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const
395cdf0e10cSrcweir     {
396cdf0e10cSrcweir         return (
397cdf0e10cSrcweir             maStartPoint.equal(rBezier.maStartPoint)
398cdf0e10cSrcweir             && maEndPoint.equal(rBezier.maEndPoint)
399cdf0e10cSrcweir             && maControlPointA.equal(rBezier.maControlPointA)
400cdf0e10cSrcweir             && maControlPointB.equal(rBezier.maControlPointB)
401cdf0e10cSrcweir         );
402cdf0e10cSrcweir     }
403cdf0e10cSrcweir 
404cdf0e10cSrcweir     // test if vectors are used
isBezier() const405cdf0e10cSrcweir     bool B2DCubicBezier::isBezier() const
406cdf0e10cSrcweir     {
407cdf0e10cSrcweir         if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
408cdf0e10cSrcweir         {
409cdf0e10cSrcweir             return true;
410cdf0e10cSrcweir         }
411cdf0e10cSrcweir 
412cdf0e10cSrcweir         return false;
413cdf0e10cSrcweir     }
414cdf0e10cSrcweir 
testAndSolveTrivialBezier()415cdf0e10cSrcweir     void B2DCubicBezier::testAndSolveTrivialBezier()
416cdf0e10cSrcweir     {
417cdf0e10cSrcweir         if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
418cdf0e10cSrcweir         {
419cdf0e10cSrcweir             const B2DVector aEdge(maEndPoint - maStartPoint);
420cdf0e10cSrcweir 
421cdf0e10cSrcweir             // controls parallel to edge can be trivial. No edge -> not parallel -> control can
422*42fb6e95Smseidel             // still not be trivial (e.g. balloon loop)
423cdf0e10cSrcweir             if(!aEdge.equalZero())
424cdf0e10cSrcweir             {
425cdf0e10cSrcweir                 // get control vectors
426cdf0e10cSrcweir                 const B2DVector aVecA(maControlPointA - maStartPoint);
427cdf0e10cSrcweir                 const B2DVector aVecB(maControlPointB - maEndPoint);
428cdf0e10cSrcweir 
429cdf0e10cSrcweir                 // check if trivial per se
430cdf0e10cSrcweir                 bool bAIsTrivial(aVecA.equalZero());
431cdf0e10cSrcweir                 bool bBIsTrivial(aVecB.equalZero());
432cdf0e10cSrcweir 
433cdf0e10cSrcweir                 // #i102241# prepare inverse edge length to normalize cross values;
434cdf0e10cSrcweir                 // else the small compare value used in fTools::equalZero
435cdf0e10cSrcweir                 // will be length dependent and this detection will work as less
436cdf0e10cSrcweir                 // precise as longer the edge is. In principle, the length of the control
437cdf0e10cSrcweir                 // vector would need to be used too, but to be trivial it is assumed to
438cdf0e10cSrcweir                 // be of roughly equal length to the edge, so edge length can be used
439cdf0e10cSrcweir                 // for both. Only needed when one of both is not trivial per se.
440cdf0e10cSrcweir                 const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial
441cdf0e10cSrcweir                     ? 1.0
442cdf0e10cSrcweir                     : 1.0 / aEdge.getLength());
443cdf0e10cSrcweir 
444cdf0e10cSrcweir                 // if A is not zero, check if it could be
445cdf0e10cSrcweir                 if(!bAIsTrivial)
446cdf0e10cSrcweir                 {
447cdf0e10cSrcweir                     // #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what
448cdf0e10cSrcweir                     // we need here with the precision we need
449cdf0e10cSrcweir                     const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength);
450cdf0e10cSrcweir 
451cdf0e10cSrcweir                     if(fTools::equalZero(fCross))
452cdf0e10cSrcweir                     {
453cdf0e10cSrcweir                         // get scale to edge. Use bigger distance for numeric quality
454cdf0e10cSrcweir                         const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
455cdf0e10cSrcweir                             ? aVecA.getX() / aEdge.getX()
456cdf0e10cSrcweir                             : aVecA.getY() / aEdge.getY());
457cdf0e10cSrcweir 
458cdf0e10cSrcweir                         // relative end point of vector in edge range?
459cdf0e10cSrcweir                         if(fTools::moreOrEqual(fScale, 0.0) && fTools::lessOrEqual(fScale, 1.0))
460cdf0e10cSrcweir                         {
461cdf0e10cSrcweir                             bAIsTrivial = true;
462cdf0e10cSrcweir                         }
463cdf0e10cSrcweir                     }
464cdf0e10cSrcweir                 }
465cdf0e10cSrcweir 
466cdf0e10cSrcweir                 // if B is not zero, check if it could be, but only if A is already trivial;
467cdf0e10cSrcweir                 // else solve to trivial will not be possible for whole edge
468cdf0e10cSrcweir                 if(bAIsTrivial && !bBIsTrivial)
469cdf0e10cSrcweir                 {
470cdf0e10cSrcweir                     // parallel to edge? Check aVecB, aEdge
471cdf0e10cSrcweir                     const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength);
472cdf0e10cSrcweir 
473cdf0e10cSrcweir                     if(fTools::equalZero(fCross))
474cdf0e10cSrcweir                     {
475cdf0e10cSrcweir                         // get scale to edge. Use bigger distance for numeric quality
476cdf0e10cSrcweir                         const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
477cdf0e10cSrcweir                             ? aVecB.getX() / aEdge.getX()
478cdf0e10cSrcweir                             : aVecB.getY() / aEdge.getY());
479cdf0e10cSrcweir 
480cdf0e10cSrcweir                         // end point of vector in edge range? Caution: controlB is directed AGAINST edge
481cdf0e10cSrcweir                         if(fTools::lessOrEqual(fScale, 0.0) && fTools::moreOrEqual(fScale, -1.0))
482cdf0e10cSrcweir                         {
483cdf0e10cSrcweir                             bBIsTrivial = true;
484cdf0e10cSrcweir                         }
485cdf0e10cSrcweir                     }
486cdf0e10cSrcweir                 }
487cdf0e10cSrcweir 
488cdf0e10cSrcweir                 // if both are/can be reduced, do it.
489cdf0e10cSrcweir                 // Not possible if only one is/can be reduced (!)
490cdf0e10cSrcweir                 if(bAIsTrivial && bBIsTrivial)
491cdf0e10cSrcweir                 {
492cdf0e10cSrcweir                     maControlPointA = maStartPoint;
493cdf0e10cSrcweir                     maControlPointB = maEndPoint;
494cdf0e10cSrcweir                 }
495cdf0e10cSrcweir             }
496cdf0e10cSrcweir         }
497cdf0e10cSrcweir     }
498cdf0e10cSrcweir 
499cdf0e10cSrcweir     namespace {
impGetLength(const B2DCubicBezier & rEdge,double fDeviation,sal_uInt32 nRecursionWatch)500cdf0e10cSrcweir         double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch)
501cdf0e10cSrcweir         {
502cdf0e10cSrcweir             const double fEdgeLength(rEdge.getEdgeLength());
503cdf0e10cSrcweir             const double fControlPolygonLength(rEdge.getControlPolygonLength());
504cdf0e10cSrcweir             const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength));
505cdf0e10cSrcweir 
506cdf0e10cSrcweir             if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation))
507cdf0e10cSrcweir             {
508cdf0e10cSrcweir                 return (fEdgeLength + fControlPolygonLength) * 0.5;
509cdf0e10cSrcweir             }
510cdf0e10cSrcweir             else
511cdf0e10cSrcweir             {
512cdf0e10cSrcweir                 B2DCubicBezier aLeft, aRight;
513cdf0e10cSrcweir                 const double fNewDeviation(fDeviation * 0.5);
514cdf0e10cSrcweir                 const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1);
515cdf0e10cSrcweir 
516cdf0e10cSrcweir                 rEdge.split(0.5, &aLeft, &aRight);
517cdf0e10cSrcweir 
518cdf0e10cSrcweir                 return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch)
519cdf0e10cSrcweir                     + impGetLength(aRight, fNewDeviation, nNewRecursionWatch);
520cdf0e10cSrcweir             }
521cdf0e10cSrcweir         }
522cdf0e10cSrcweir     }
523cdf0e10cSrcweir 
getLength(double fDeviation) const524cdf0e10cSrcweir     double B2DCubicBezier::getLength(double fDeviation) const
525cdf0e10cSrcweir     {
526cdf0e10cSrcweir         if(isBezier())
527cdf0e10cSrcweir         {
528cdf0e10cSrcweir             if(fDeviation < 0.00000001)
529cdf0e10cSrcweir             {
530cdf0e10cSrcweir                 fDeviation = 0.00000001;
531cdf0e10cSrcweir             }
532cdf0e10cSrcweir 
533cdf0e10cSrcweir             return impGetLength(*this, fDeviation, 6);
534cdf0e10cSrcweir         }
535cdf0e10cSrcweir         else
536cdf0e10cSrcweir         {
537cdf0e10cSrcweir             return B2DVector(getEndPoint() - getStartPoint()).getLength();
538cdf0e10cSrcweir         }
539cdf0e10cSrcweir     }
540cdf0e10cSrcweir 
getEdgeLength() const541cdf0e10cSrcweir     double B2DCubicBezier::getEdgeLength() const
542cdf0e10cSrcweir     {
543cdf0e10cSrcweir         const B2DVector aEdge(maEndPoint - maStartPoint);
544cdf0e10cSrcweir         return aEdge.getLength();
545cdf0e10cSrcweir     }
546cdf0e10cSrcweir 
getControlPolygonLength() const547cdf0e10cSrcweir     double B2DCubicBezier::getControlPolygonLength() const
548cdf0e10cSrcweir     {
549cdf0e10cSrcweir         const B2DVector aVectorA(maControlPointA - maStartPoint);
550cdf0e10cSrcweir         const B2DVector aVectorB(maEndPoint - maControlPointB);
551cdf0e10cSrcweir 
552cdf0e10cSrcweir         if(!aVectorA.equalZero() || !aVectorB.equalZero())
553cdf0e10cSrcweir         {
554cdf0e10cSrcweir             const B2DVector aTop(maControlPointB - maControlPointA);
555cdf0e10cSrcweir             return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength());
556cdf0e10cSrcweir         }
557cdf0e10cSrcweir         else
558cdf0e10cSrcweir         {
559cdf0e10cSrcweir             return getEdgeLength();
560cdf0e10cSrcweir         }
561cdf0e10cSrcweir     }
562cdf0e10cSrcweir 
adaptiveSubdivideByAngle(B2DPolygon & rTarget,double fAngleBound,bool bAllowUnsharpen) const563cdf0e10cSrcweir     void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound, bool bAllowUnsharpen) const
564cdf0e10cSrcweir     {
565cdf0e10cSrcweir         if(isBezier())
566cdf0e10cSrcweir         {
567cdf0e10cSrcweir             // use support method #i37443# and allow unsharpen the criteria
568cdf0e10cSrcweir             ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, fAngleBound * F_PI180, bAllowUnsharpen);
569cdf0e10cSrcweir         }
570cdf0e10cSrcweir         else
571cdf0e10cSrcweir         {
572cdf0e10cSrcweir             rTarget.append(getEndPoint());
573cdf0e10cSrcweir         }
574cdf0e10cSrcweir     }
575cdf0e10cSrcweir 
getTangent(double t) const576cdf0e10cSrcweir     B2DVector B2DCubicBezier::getTangent(double t) const
577cdf0e10cSrcweir     {
578cdf0e10cSrcweir         if(fTools::lessOrEqual(t, 0.0))
579cdf0e10cSrcweir         {
580cdf0e10cSrcweir             // tangent in start point
581cdf0e10cSrcweir             B2DVector aTangent(getControlPointA() - getStartPoint());
582cdf0e10cSrcweir 
583cdf0e10cSrcweir             if(!aTangent.equalZero())
584cdf0e10cSrcweir             {
585cdf0e10cSrcweir                 return aTangent;
586cdf0e10cSrcweir             }
587cdf0e10cSrcweir 
588cdf0e10cSrcweir             // start point and control vector are the same, fallback
589cdf0e10cSrcweir             // to implicit start vector to control point B
590cdf0e10cSrcweir             aTangent = (getControlPointB() - getStartPoint()) * 0.3;
591cdf0e10cSrcweir 
592cdf0e10cSrcweir             if(!aTangent.equalZero())
593cdf0e10cSrcweir             {
594cdf0e10cSrcweir                 return aTangent;
595cdf0e10cSrcweir             }
596cdf0e10cSrcweir 
597cdf0e10cSrcweir             // not a bezier at all, return edge vector
598cdf0e10cSrcweir             return (getEndPoint() - getStartPoint()) * 0.3;
599cdf0e10cSrcweir         }
600cdf0e10cSrcweir         else if(fTools::moreOrEqual(t, 1.0))
601cdf0e10cSrcweir         {
602cdf0e10cSrcweir             // tangent in end point
603cdf0e10cSrcweir             B2DVector aTangent(getEndPoint() - getControlPointB());
604cdf0e10cSrcweir 
605cdf0e10cSrcweir             if(!aTangent.equalZero())
606cdf0e10cSrcweir             {
607cdf0e10cSrcweir                 return aTangent;
608cdf0e10cSrcweir             }
609cdf0e10cSrcweir 
610cdf0e10cSrcweir             // end point and control vector are the same, fallback
611cdf0e10cSrcweir             // to implicit start vector from control point A
612cdf0e10cSrcweir             aTangent = (getEndPoint() - getControlPointA()) * 0.3;
613cdf0e10cSrcweir 
614cdf0e10cSrcweir             if(!aTangent.equalZero())
615cdf0e10cSrcweir             {
616cdf0e10cSrcweir                 return aTangent;
617cdf0e10cSrcweir             }
618cdf0e10cSrcweir 
619cdf0e10cSrcweir             // not a bezier at all, return edge vector
620cdf0e10cSrcweir             return (getEndPoint() - getStartPoint()) * 0.3;
621cdf0e10cSrcweir         }
622cdf0e10cSrcweir         else
623cdf0e10cSrcweir         {
624cdf0e10cSrcweir             // t is in ]0.0 .. 1.0[. Split and extract
625cdf0e10cSrcweir             B2DCubicBezier aRight;
626cdf0e10cSrcweir             split(t, 0, &aRight);
627cdf0e10cSrcweir 
628cdf0e10cSrcweir             return aRight.getControlPointA() - aRight.getStartPoint();
629cdf0e10cSrcweir         }
630cdf0e10cSrcweir     }
631cdf0e10cSrcweir 
632cdf0e10cSrcweir     // #i37443# adaptive subdivide by nCount subdivisions
adaptiveSubdivideByCount(B2DPolygon & rTarget,sal_uInt32 nCount) const633cdf0e10cSrcweir     void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const
634cdf0e10cSrcweir     {
635cdf0e10cSrcweir         const double fLenFact(1.0 / static_cast< double >(nCount + 1));
636cdf0e10cSrcweir 
637cdf0e10cSrcweir         for(sal_uInt32 a(1); a <= nCount; a++)
638cdf0e10cSrcweir         {
639cdf0e10cSrcweir             const double fPos(static_cast< double >(a) * fLenFact);
640cdf0e10cSrcweir             rTarget.append(interpolatePoint(fPos));
641cdf0e10cSrcweir         }
642cdf0e10cSrcweir 
643cdf0e10cSrcweir         rTarget.append(getEndPoint());
644cdf0e10cSrcweir     }
645cdf0e10cSrcweir 
646cdf0e10cSrcweir     // adaptive subdivide by distance
adaptiveSubdivideByDistance(B2DPolygon & rTarget,double fDistanceBound) const647cdf0e10cSrcweir     void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const
648cdf0e10cSrcweir     {
649cdf0e10cSrcweir         if(isBezier())
650cdf0e10cSrcweir         {
651cdf0e10cSrcweir             ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget,
652cdf0e10cSrcweir                 fDistanceBound * fDistanceBound, ::std::numeric_limits<double>::max(), 30);
653cdf0e10cSrcweir         }
654cdf0e10cSrcweir         else
655cdf0e10cSrcweir         {
656cdf0e10cSrcweir             rTarget.append(getEndPoint());
657cdf0e10cSrcweir         }
658cdf0e10cSrcweir     }
659cdf0e10cSrcweir 
interpolatePoint(double t) const660cdf0e10cSrcweir     B2DPoint B2DCubicBezier::interpolatePoint(double t) const
661cdf0e10cSrcweir     {
662cdf0e10cSrcweir         OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)");
663cdf0e10cSrcweir 
664cdf0e10cSrcweir         if(isBezier())
665cdf0e10cSrcweir         {
666cdf0e10cSrcweir             const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
667cdf0e10cSrcweir             const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
668cdf0e10cSrcweir             const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
669cdf0e10cSrcweir             const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
670cdf0e10cSrcweir             const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
671cdf0e10cSrcweir 
672cdf0e10cSrcweir             return interpolate(aS2L, aS2R, t);
673cdf0e10cSrcweir         }
674cdf0e10cSrcweir         else
675cdf0e10cSrcweir         {
676cdf0e10cSrcweir             return interpolate(maStartPoint, maEndPoint, t);
677cdf0e10cSrcweir         }
678cdf0e10cSrcweir     }
679cdf0e10cSrcweir 
getSmallestDistancePointToBezierSegment(const B2DPoint & rTestPoint,double & rCut) const680cdf0e10cSrcweir     double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const
681cdf0e10cSrcweir     {
682cdf0e10cSrcweir         const sal_uInt32 nInitialDivisions(3L);
683cdf0e10cSrcweir         B2DPolygon aInitialPolygon;
684cdf0e10cSrcweir 
685cdf0e10cSrcweir         // as start make a fix division, creates nInitialDivisions + 2L points
686cdf0e10cSrcweir         aInitialPolygon.append(getStartPoint());
687cdf0e10cSrcweir         adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions);
688cdf0e10cSrcweir 
689cdf0e10cSrcweir         // now look for the closest point
690cdf0e10cSrcweir         const sal_uInt32 nPointCount(aInitialPolygon.count());
691cdf0e10cSrcweir         B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0L));
692cdf0e10cSrcweir         double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY());
693cdf0e10cSrcweir         double fNewQuadDist;
694cdf0e10cSrcweir         sal_uInt32 nSmallestIndex(0L);
695cdf0e10cSrcweir 
696cdf0e10cSrcweir         for(sal_uInt32 a(1L); a < nPointCount; a++)
697cdf0e10cSrcweir         {
698cdf0e10cSrcweir             aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a));
699cdf0e10cSrcweir             fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
700cdf0e10cSrcweir 
701cdf0e10cSrcweir             if(fNewQuadDist < fQuadDist)
702cdf0e10cSrcweir             {
703cdf0e10cSrcweir                 fQuadDist = fNewQuadDist;
704cdf0e10cSrcweir                 nSmallestIndex = a;
705cdf0e10cSrcweir             }
706cdf0e10cSrcweir         }
707cdf0e10cSrcweir 
708cdf0e10cSrcweir         // look right and left for even smaller distances
709cdf0e10cSrcweir         double fStepValue(1.0 / (double)((nPointCount - 1L) * 2L)); // half the edge step width
710cdf0e10cSrcweir         double fPosition((double)nSmallestIndex / (double)(nPointCount - 1L));
711cdf0e10cSrcweir         bool bDone(false);
712cdf0e10cSrcweir 
713cdf0e10cSrcweir         while(!bDone)
714cdf0e10cSrcweir         {
715cdf0e10cSrcweir             if(!bDone)
716cdf0e10cSrcweir             {
717cdf0e10cSrcweir                 // test left
718cdf0e10cSrcweir                 double fPosLeft(fPosition - fStepValue);
719cdf0e10cSrcweir 
720cdf0e10cSrcweir                 if(fPosLeft < 0.0)
721cdf0e10cSrcweir                 {
722cdf0e10cSrcweir                     fPosLeft = 0.0;
723cdf0e10cSrcweir                     aVector = B2DVector(rTestPoint - maStartPoint);
724cdf0e10cSrcweir                 }
725cdf0e10cSrcweir                 else
726cdf0e10cSrcweir                 {
727cdf0e10cSrcweir                     aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft));
728cdf0e10cSrcweir                 }
729cdf0e10cSrcweir 
730cdf0e10cSrcweir                 fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
731cdf0e10cSrcweir 
732cdf0e10cSrcweir                 if(fTools::less(fNewQuadDist, fQuadDist))
733cdf0e10cSrcweir                 {
734cdf0e10cSrcweir                     fQuadDist = fNewQuadDist;
735cdf0e10cSrcweir                     fPosition = fPosLeft;
736cdf0e10cSrcweir                 }
737cdf0e10cSrcweir                 else
738cdf0e10cSrcweir                 {
739cdf0e10cSrcweir                     // test right
740cdf0e10cSrcweir                     double fPosRight(fPosition + fStepValue);
741cdf0e10cSrcweir 
742cdf0e10cSrcweir                     if(fPosRight > 1.0)
743cdf0e10cSrcweir                     {
744cdf0e10cSrcweir                         fPosRight = 1.0;
745cdf0e10cSrcweir                         aVector = B2DVector(rTestPoint - maEndPoint);
746cdf0e10cSrcweir                     }
747cdf0e10cSrcweir                     else
748cdf0e10cSrcweir                     {
749cdf0e10cSrcweir                         aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight));
750cdf0e10cSrcweir                     }
751cdf0e10cSrcweir 
752cdf0e10cSrcweir                     fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
753cdf0e10cSrcweir 
754cdf0e10cSrcweir                     if(fTools::less(fNewQuadDist, fQuadDist))
755cdf0e10cSrcweir                     {
756cdf0e10cSrcweir                         fQuadDist = fNewQuadDist;
757cdf0e10cSrcweir                         fPosition = fPosRight;
758cdf0e10cSrcweir                     }
759cdf0e10cSrcweir                     else
760cdf0e10cSrcweir                     {
761cdf0e10cSrcweir                         // not less left or right, done
762cdf0e10cSrcweir                         bDone = true;
763cdf0e10cSrcweir                     }
764cdf0e10cSrcweir                 }
765cdf0e10cSrcweir             }
766cdf0e10cSrcweir 
767cdf0e10cSrcweir             if(0.0 == fPosition || 1.0 == fPosition)
768cdf0e10cSrcweir             {
769cdf0e10cSrcweir                 // if we are completely left or right, we are done
770cdf0e10cSrcweir                 bDone = true;
771cdf0e10cSrcweir             }
772cdf0e10cSrcweir 
773cdf0e10cSrcweir             if(!bDone)
774cdf0e10cSrcweir             {
775cdf0e10cSrcweir                 // prepare next step value
776cdf0e10cSrcweir                 fStepValue /= 2.0;
777cdf0e10cSrcweir             }
778cdf0e10cSrcweir         }
779cdf0e10cSrcweir 
780cdf0e10cSrcweir         rCut = fPosition;
781cdf0e10cSrcweir         return sqrt(fQuadDist);
782cdf0e10cSrcweir     }
783cdf0e10cSrcweir 
split(double t,B2DCubicBezier * pBezierA,B2DCubicBezier * pBezierB) const784cdf0e10cSrcweir     void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const
785cdf0e10cSrcweir     {
786cdf0e10cSrcweir         OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)");
787cdf0e10cSrcweir 
788cdf0e10cSrcweir         if(!pBezierA && !pBezierB)
789cdf0e10cSrcweir         {
790cdf0e10cSrcweir             return;
791cdf0e10cSrcweir         }
792cdf0e10cSrcweir 
793cdf0e10cSrcweir         if(isBezier())
794cdf0e10cSrcweir         {
795cdf0e10cSrcweir             const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
796cdf0e10cSrcweir             const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
797cdf0e10cSrcweir             const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
798cdf0e10cSrcweir             const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
799cdf0e10cSrcweir             const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
800cdf0e10cSrcweir             const B2DPoint aS3C(interpolate(aS2L, aS2R, t));
801cdf0e10cSrcweir 
802cdf0e10cSrcweir             if(pBezierA)
803cdf0e10cSrcweir             {
804cdf0e10cSrcweir                 pBezierA->setStartPoint(maStartPoint);
805cdf0e10cSrcweir                 pBezierA->setEndPoint(aS3C);
806cdf0e10cSrcweir                 pBezierA->setControlPointA(aS1L);
807cdf0e10cSrcweir                 pBezierA->setControlPointB(aS2L);
808cdf0e10cSrcweir             }
809cdf0e10cSrcweir 
810cdf0e10cSrcweir             if(pBezierB)
811cdf0e10cSrcweir             {
812cdf0e10cSrcweir                 pBezierB->setStartPoint(aS3C);
813cdf0e10cSrcweir                 pBezierB->setEndPoint(maEndPoint);
814cdf0e10cSrcweir                 pBezierB->setControlPointA(aS2R);
815cdf0e10cSrcweir                 pBezierB->setControlPointB(aS1R);
816cdf0e10cSrcweir             }
817cdf0e10cSrcweir         }
818cdf0e10cSrcweir         else
819cdf0e10cSrcweir         {
820cdf0e10cSrcweir             const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t));
821cdf0e10cSrcweir 
822cdf0e10cSrcweir             if(pBezierA)
823cdf0e10cSrcweir             {
824cdf0e10cSrcweir                 pBezierA->setStartPoint(maStartPoint);
825cdf0e10cSrcweir                 pBezierA->setEndPoint(aSplit);
826cdf0e10cSrcweir                 pBezierA->setControlPointA(maStartPoint);
827cdf0e10cSrcweir                 pBezierA->setControlPointB(aSplit);
828cdf0e10cSrcweir             }
829cdf0e10cSrcweir 
830cdf0e10cSrcweir             if(pBezierB)
831cdf0e10cSrcweir             {
832cdf0e10cSrcweir                 pBezierB->setStartPoint(aSplit);
833cdf0e10cSrcweir                 pBezierB->setEndPoint(maEndPoint);
834cdf0e10cSrcweir                 pBezierB->setControlPointA(aSplit);
835cdf0e10cSrcweir                 pBezierB->setControlPointB(maEndPoint);
836cdf0e10cSrcweir             }
837cdf0e10cSrcweir         }
838cdf0e10cSrcweir     }
839cdf0e10cSrcweir 
snippet(double fStart,double fEnd) const840cdf0e10cSrcweir     B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const
841cdf0e10cSrcweir     {
842cdf0e10cSrcweir         B2DCubicBezier aRetval;
843cdf0e10cSrcweir 
844cdf0e10cSrcweir         if(fTools::more(fStart, 1.0))
845cdf0e10cSrcweir         {
846cdf0e10cSrcweir             fStart = 1.0;
847cdf0e10cSrcweir         }
848cdf0e10cSrcweir         else if(fTools::less(fStart, 0.0))
849cdf0e10cSrcweir         {
850cdf0e10cSrcweir             fStart = 0.0;
851cdf0e10cSrcweir         }
852cdf0e10cSrcweir 
853cdf0e10cSrcweir         if(fTools::more(fEnd, 1.0))
854cdf0e10cSrcweir         {
855cdf0e10cSrcweir             fEnd = 1.0;
856cdf0e10cSrcweir         }
857cdf0e10cSrcweir         else if(fTools::less(fEnd, 0.0))
858cdf0e10cSrcweir         {
859cdf0e10cSrcweir             fEnd = 0.0;
860cdf0e10cSrcweir         }
861cdf0e10cSrcweir 
862cdf0e10cSrcweir         if(fEnd <= fStart)
863cdf0e10cSrcweir         {
864cdf0e10cSrcweir             // empty or NULL, create single point at center
865cdf0e10cSrcweir             const double fSplit((fEnd + fStart) * 0.5);
866cdf0e10cSrcweir             const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit));
867cdf0e10cSrcweir             aRetval.setStartPoint(aPoint);
868cdf0e10cSrcweir             aRetval.setEndPoint(aPoint);
869cdf0e10cSrcweir             aRetval.setControlPointA(aPoint);
870cdf0e10cSrcweir             aRetval.setControlPointB(aPoint);
871cdf0e10cSrcweir         }
872cdf0e10cSrcweir         else
873cdf0e10cSrcweir         {
874cdf0e10cSrcweir             if(isBezier())
875cdf0e10cSrcweir             {
876cdf0e10cSrcweir                 // copy bezier; cut off right, then cut off left. Do not forget to
877cdf0e10cSrcweir                 // adapt cut value when both cuts happen
878cdf0e10cSrcweir                 const bool bEndIsOne(fTools::equal(fEnd, 1.0));
879cdf0e10cSrcweir                 const bool bStartIsZero(fTools::equalZero(fStart));
880cdf0e10cSrcweir                 aRetval = *this;
881cdf0e10cSrcweir 
882cdf0e10cSrcweir                 if(!bEndIsOne)
883cdf0e10cSrcweir                 {
884cdf0e10cSrcweir                     aRetval.split(fEnd, &aRetval, 0);
885cdf0e10cSrcweir 
886cdf0e10cSrcweir                     if(!bStartIsZero)
887cdf0e10cSrcweir                     {
888cdf0e10cSrcweir                         fStart /= fEnd;
889cdf0e10cSrcweir                     }
890cdf0e10cSrcweir                 }
891cdf0e10cSrcweir 
892cdf0e10cSrcweir                 if(!bStartIsZero)
893cdf0e10cSrcweir                 {
894cdf0e10cSrcweir                     aRetval.split(fStart, 0, &aRetval);
895cdf0e10cSrcweir                 }
896cdf0e10cSrcweir             }
897cdf0e10cSrcweir             else
898cdf0e10cSrcweir             {
899cdf0e10cSrcweir                 // no bezier, create simple edge
900cdf0e10cSrcweir                 const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart));
901cdf0e10cSrcweir                 const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd));
902cdf0e10cSrcweir                 aRetval.setStartPoint(aPointA);
903cdf0e10cSrcweir                 aRetval.setEndPoint(aPointB);
904cdf0e10cSrcweir                 aRetval.setControlPointA(aPointA);
905cdf0e10cSrcweir                 aRetval.setControlPointB(aPointB);
906cdf0e10cSrcweir             }
907cdf0e10cSrcweir         }
908cdf0e10cSrcweir 
909cdf0e10cSrcweir         return aRetval;
910cdf0e10cSrcweir     }
911cdf0e10cSrcweir 
getRange() const912cdf0e10cSrcweir     B2DRange B2DCubicBezier::getRange() const
913cdf0e10cSrcweir     {
914cdf0e10cSrcweir         B2DRange aRetval(maStartPoint, maEndPoint);
915cdf0e10cSrcweir 
916cdf0e10cSrcweir         aRetval.expand(maControlPointA);
917cdf0e10cSrcweir         aRetval.expand(maControlPointB);
918cdf0e10cSrcweir 
919cdf0e10cSrcweir         return aRetval;
920cdf0e10cSrcweir     }
921cdf0e10cSrcweir 
getMinimumExtremumPosition(double & rfResult) const922cdf0e10cSrcweir     bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const
923cdf0e10cSrcweir     {
924cdf0e10cSrcweir         ::std::vector< double > aAllResults;
925cdf0e10cSrcweir 
926cdf0e10cSrcweir         aAllResults.reserve(4);
927cdf0e10cSrcweir         getAllExtremumPositions(aAllResults);
928cdf0e10cSrcweir 
929cdf0e10cSrcweir         const sal_uInt32 nCount(aAllResults.size());
930cdf0e10cSrcweir 
931cdf0e10cSrcweir         if(!nCount)
932cdf0e10cSrcweir         {
933cdf0e10cSrcweir             return false;
934cdf0e10cSrcweir         }
935cdf0e10cSrcweir         else if(1 == nCount)
936cdf0e10cSrcweir         {
937cdf0e10cSrcweir             rfResult = aAllResults[0];
938cdf0e10cSrcweir             return true;
939cdf0e10cSrcweir         }
940cdf0e10cSrcweir         else
941cdf0e10cSrcweir         {
942cdf0e10cSrcweir             rfResult = *(::std::min_element(aAllResults.begin(), aAllResults.end()));
943cdf0e10cSrcweir             return true;
944cdf0e10cSrcweir         }
945cdf0e10cSrcweir     }
946cdf0e10cSrcweir 
947cdf0e10cSrcweir     namespace
948cdf0e10cSrcweir     {
impCheckExtremumResult(double fCandidate,::std::vector<double> & rResult)949cdf0e10cSrcweir         inline void impCheckExtremumResult(double fCandidate, ::std::vector< double >& rResult)
950cdf0e10cSrcweir         {
951cdf0e10cSrcweir             // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly
952cdf0e10cSrcweir             // by using the equalZero test, NOT ::more or ::less which will use the
953cdf0e10cSrcweir             // ApproxEqual() which is too exact here
954cdf0e10cSrcweir             if(fCandidate > 0.0 && !fTools::equalZero(fCandidate))
955cdf0e10cSrcweir             {
956cdf0e10cSrcweir                 if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0))
957cdf0e10cSrcweir                 {
958cdf0e10cSrcweir                     rResult.push_back(fCandidate);
959cdf0e10cSrcweir                 }
960cdf0e10cSrcweir             }
961cdf0e10cSrcweir         }
962cdf0e10cSrcweir     }
963cdf0e10cSrcweir 
getAllExtremumPositions(::std::vector<double> & rResults) const964cdf0e10cSrcweir     void B2DCubicBezier::getAllExtremumPositions(::std::vector< double >& rResults) const
965cdf0e10cSrcweir     {
966cdf0e10cSrcweir         rResults.clear();
967cdf0e10cSrcweir 
968cdf0e10cSrcweir         // calculate the x-extrema parameters by zeroing first x-derivative
969cdf0e10cSrcweir         // of the cubic bezier's parametric formula, which results in a
970cdf0e10cSrcweir         // quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
971cdf0e10cSrcweir         const B2DPoint aControlDiff( maControlPointA - maControlPointB );
972cdf0e10cSrcweir         double fCX = maControlPointA.getX() - maStartPoint.getX();
973cdf0e10cSrcweir         const double fBX = fCX + aControlDiff.getX();
974cdf0e10cSrcweir         const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX());
975cdf0e10cSrcweir 
976cdf0e10cSrcweir         if(fTools::equalZero(fCX))
977cdf0e10cSrcweir         {
978cdf0e10cSrcweir             // detect fCX equal zero and truncate to real zero value in that case
979cdf0e10cSrcweir             fCX = 0.0;
980cdf0e10cSrcweir         }
981cdf0e10cSrcweir 
982cdf0e10cSrcweir         if( !fTools::equalZero(fAX) )
983cdf0e10cSrcweir         {
984cdf0e10cSrcweir             // derivative is polynomial of order 2 => use binomial formula
985cdf0e10cSrcweir             const double fD = fBX*fBX - fAX*fCX;
986cdf0e10cSrcweir             if( fD >= 0.0 )
987cdf0e10cSrcweir             {
988cdf0e10cSrcweir                 const double fS = sqrt(fD);
989cdf0e10cSrcweir                 // calculate both roots (avoiding a numerically unstable subtraction)
990cdf0e10cSrcweir                 const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
991cdf0e10cSrcweir                 impCheckExtremumResult(fQ / fAX, rResults);
992cdf0e10cSrcweir                 if( !fTools::equalZero(fS) ) // ignore root multiplicity
993cdf0e10cSrcweir                     impCheckExtremumResult(fCX / fQ, rResults);
994cdf0e10cSrcweir             }
995cdf0e10cSrcweir         }
996cdf0e10cSrcweir         else if( !fTools::equalZero(fBX) )
997cdf0e10cSrcweir         {
998cdf0e10cSrcweir             // derivative is polynomial of order 1 => one extrema
999cdf0e10cSrcweir             impCheckExtremumResult(fCX / (2 * fBX), rResults);
1000cdf0e10cSrcweir         }
1001cdf0e10cSrcweir 
1002cdf0e10cSrcweir         // calculate the y-extrema parameters by zeroing first y-derivative
1003cdf0e10cSrcweir         double fCY = maControlPointA.getY() - maStartPoint.getY();
1004cdf0e10cSrcweir         const double fBY = fCY + aControlDiff.getY();
1005cdf0e10cSrcweir         const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY());
1006cdf0e10cSrcweir 
1007cdf0e10cSrcweir         if(fTools::equalZero(fCY))
1008cdf0e10cSrcweir         {
1009cdf0e10cSrcweir             // detect fCY equal zero and truncate to real zero value in that case
1010cdf0e10cSrcweir             fCY = 0.0;
1011cdf0e10cSrcweir         }
1012cdf0e10cSrcweir 
1013cdf0e10cSrcweir         if( !fTools::equalZero(fAY) )
1014cdf0e10cSrcweir         {
1015cdf0e10cSrcweir             // derivative is polynomial of order 2 => use binomial formula
1016cdf0e10cSrcweir             const double fD = fBY*fBY - fAY*fCY;
1017cdf0e10cSrcweir             if( fD >= 0.0 )
1018cdf0e10cSrcweir             {
1019cdf0e10cSrcweir                 const double fS = sqrt(fD);
1020cdf0e10cSrcweir                 // calculate both roots (avoiding a numerically unstable subtraction)
1021cdf0e10cSrcweir                 const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
1022cdf0e10cSrcweir                 impCheckExtremumResult(fQ / fAY, rResults);
1023cdf0e10cSrcweir                 if( !fTools::equalZero(fS) ) // ignore root multiplicity
1024cdf0e10cSrcweir                     impCheckExtremumResult(fCY / fQ, rResults);
1025cdf0e10cSrcweir             }
1026cdf0e10cSrcweir         }
1027cdf0e10cSrcweir         else if( !fTools::equalZero(fBY) )
1028cdf0e10cSrcweir         {
1029cdf0e10cSrcweir             // derivative is polynomial of order 1 => one extrema
1030cdf0e10cSrcweir             impCheckExtremumResult(fCY / (2 * fBY), rResults);
1031cdf0e10cSrcweir         }
1032cdf0e10cSrcweir     }
1033cdf0e10cSrcweir 
getMaxDistancePositions(double pResult[2]) const1034cdf0e10cSrcweir     int B2DCubicBezier::getMaxDistancePositions( double pResult[2]) const
1035cdf0e10cSrcweir     {
1036cdf0e10cSrcweir         // the distance from the bezier to a line through start and end
1037cdf0e10cSrcweir         // is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t)-STARTy,-BEZIERx(t)-STARTx)
1038cdf0e10cSrcweir         // this distance becomes zero for at least t==0 and t==1
1039cdf0e10cSrcweir         // its extrema that are between 0..1 are interesting as split candidates
1040cdf0e10cSrcweir         // its derived function has the form dD/dt = fA*t^2 + 2*fB*t + fC
1041cdf0e10cSrcweir         const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
1042cdf0e10cSrcweir         const double fA = (3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX()) * aRelativeEndPoint.getY()
1043cdf0e10cSrcweir                 - (3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY()) * aRelativeEndPoint.getX();
1044cdf0e10cSrcweir         const double fB = (maControlPointB.getX() - 2 * maControlPointA.getX() + maStartPoint.getX()) * aRelativeEndPoint.getY()
1045cdf0e10cSrcweir                 - (maControlPointB.getY() - 2 * maControlPointA.getY() + maStartPoint.getY()) * aRelativeEndPoint.getX();
1046cdf0e10cSrcweir         const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY()
1047cdf0e10cSrcweir                 - (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX();
1048cdf0e10cSrcweir 
1049cdf0e10cSrcweir         // test for degenerated case: order<2
1050cdf0e10cSrcweir         if( fTools::equalZero(fA) )
1051cdf0e10cSrcweir         {
1052cdf0e10cSrcweir             // test for degenerated case: order==0
1053cdf0e10cSrcweir             if( fTools::equalZero(fB) )
1054cdf0e10cSrcweir                 return 0;
1055cdf0e10cSrcweir 
1056cdf0e10cSrcweir             // solving the order==1 polynomial is trivial
1057cdf0e10cSrcweir             pResult[0] = -fC / (2*fB);
1058cdf0e10cSrcweir 
1059cdf0e10cSrcweir             // test root and ignore it when it is outside the curve
1060cdf0e10cSrcweir             int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
1061cdf0e10cSrcweir             return nCount;
1062cdf0e10cSrcweir         }
1063cdf0e10cSrcweir 
1064cdf0e10cSrcweir         // derivative is polynomial of order 2
1065cdf0e10cSrcweir         // check if the polynomial has non-imaginary roots
1066cdf0e10cSrcweir         const double fD = fB*fB - fA*fC;
1067cdf0e10cSrcweir         if( fD >= 0.0 ) // TODO: is this test needed? geometrically not IMHO
1068cdf0e10cSrcweir         {
1069cdf0e10cSrcweir             // calculate first root (avoiding a numerically unstable subtraction)
1070cdf0e10cSrcweir             const double fS = sqrt(fD);
1071cdf0e10cSrcweir             const double fQ = -(fB + ((fB >= 0) ? +fS : -fS));
1072cdf0e10cSrcweir             pResult[0] = fQ / fA;
1073cdf0e10cSrcweir             // ignore root when it is outside the curve
1074cdf0e10cSrcweir             static const double fEps = 1e-9;
1075cdf0e10cSrcweir             int nCount = ((pResult[0] > fEps) && (pResult[0] < fEps));
1076cdf0e10cSrcweir 
1077cdf0e10cSrcweir             // ignore root multiplicity
1078cdf0e10cSrcweir             if( !fTools::equalZero(fD) )
1079cdf0e10cSrcweir             {
1080cdf0e10cSrcweir                 // calculate the other root
1081cdf0e10cSrcweir                 const double fRoot = fC / fQ;
1082cdf0e10cSrcweir                 // ignore root when it is outside the curve
1083cdf0e10cSrcweir                 if( (fRoot > fEps) && (fRoot < 1.0-fEps) )
1084cdf0e10cSrcweir                     pResult[ nCount++ ] = fRoot;
1085cdf0e10cSrcweir             }
1086cdf0e10cSrcweir 
1087cdf0e10cSrcweir             return nCount;
1088cdf0e10cSrcweir         }
1089cdf0e10cSrcweir 
1090cdf0e10cSrcweir         return 0;
1091cdf0e10cSrcweir     }
1092cdf0e10cSrcweir 
1093cdf0e10cSrcweir } // end of namespace basegfx
1094cdf0e10cSrcweir 
1095*42fb6e95Smseidel /* vim: set noet sw=4 ts=4: */
1096