1*cdf0e10cSrcweir /*************************************************************************
2*cdf0e10cSrcweir  *
3*cdf0e10cSrcweir  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4*cdf0e10cSrcweir  *
5*cdf0e10cSrcweir  * Copyright 2000, 2010 Oracle and/or its affiliates.
6*cdf0e10cSrcweir  *
7*cdf0e10cSrcweir  * OpenOffice.org - a multi-platform office productivity suite
8*cdf0e10cSrcweir  *
9*cdf0e10cSrcweir  * This file is part of OpenOffice.org.
10*cdf0e10cSrcweir  *
11*cdf0e10cSrcweir  * OpenOffice.org is free software: you can redistribute it and/or modify
12*cdf0e10cSrcweir  * it under the terms of the GNU Lesser General Public License version 3
13*cdf0e10cSrcweir  * only, as published by the Free Software Foundation.
14*cdf0e10cSrcweir  *
15*cdf0e10cSrcweir  * OpenOffice.org is distributed in the hope that it will be useful,
16*cdf0e10cSrcweir  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17*cdf0e10cSrcweir  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18*cdf0e10cSrcweir  * GNU Lesser General Public License version 3 for more details
19*cdf0e10cSrcweir  * (a copy is included in the LICENSE file that accompanied this code).
20*cdf0e10cSrcweir  *
21*cdf0e10cSrcweir  * You should have received a copy of the GNU Lesser General Public License
22*cdf0e10cSrcweir  * version 3 along with OpenOffice.org.  If not, see
23*cdf0e10cSrcweir  * <http://www.openoffice.org/license.html>
24*cdf0e10cSrcweir  * for a copy of the LGPLv3 License.
25*cdf0e10cSrcweir  *
26*cdf0e10cSrcweir  ************************************************************************/
27*cdf0e10cSrcweir 
28*cdf0e10cSrcweir // MARKER(update_precomp.py): autogen include statement, do not remove
29*cdf0e10cSrcweir #include "precompiled_basegfx.hxx"
30*cdf0e10cSrcweir #include <basegfx/curve/b2dcubicbezier.hxx>
31*cdf0e10cSrcweir #include <basegfx/vector/b2dvector.hxx>
32*cdf0e10cSrcweir #include <basegfx/polygon/b2dpolygon.hxx>
33*cdf0e10cSrcweir #include <basegfx/numeric/ftools.hxx>
34*cdf0e10cSrcweir 
35*cdf0e10cSrcweir #include <limits>
36*cdf0e10cSrcweir 
37*cdf0e10cSrcweir // #i37443#
38*cdf0e10cSrcweir #define FACTOR_FOR_UNSHARPEN	(1.6)
39*cdf0e10cSrcweir #ifdef DBG_UTIL
40*cdf0e10cSrcweir static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN;
41*cdf0e10cSrcweir #endif
42*cdf0e10cSrcweir 
43*cdf0e10cSrcweir //////////////////////////////////////////////////////////////////////////////
44*cdf0e10cSrcweir 
45*cdf0e10cSrcweir namespace basegfx
46*cdf0e10cSrcweir {
47*cdf0e10cSrcweir 	namespace
48*cdf0e10cSrcweir 	{
49*cdf0e10cSrcweir 		void ImpSubDivAngle(
50*cdf0e10cSrcweir 			const B2DPoint& rfPA,			// start point
51*cdf0e10cSrcweir 			const B2DPoint& rfEA,			// edge on A
52*cdf0e10cSrcweir 			const B2DPoint& rfEB,			// edge on B
53*cdf0e10cSrcweir 			const B2DPoint& rfPB,			// end point
54*cdf0e10cSrcweir 			B2DPolygon& rTarget,			// target polygon
55*cdf0e10cSrcweir 			double fAngleBound,				// angle bound in [0.0 .. 2PI]
56*cdf0e10cSrcweir 			bool bAllowUnsharpen,			// #i37443# allow the criteria to get unsharp in recursions
57*cdf0e10cSrcweir 			sal_uInt16 nMaxRecursionDepth)	// endless loop protection
58*cdf0e10cSrcweir 		{
59*cdf0e10cSrcweir 			if(nMaxRecursionDepth)
60*cdf0e10cSrcweir 			{
61*cdf0e10cSrcweir 				// do angle test
62*cdf0e10cSrcweir 				B2DVector aLeft(rfEA - rfPA);
63*cdf0e10cSrcweir 				B2DVector aRight(rfEB - rfPB);
64*cdf0e10cSrcweir 
65*cdf0e10cSrcweir 				// #i72104#
66*cdf0e10cSrcweir 				if(aLeft.equalZero())
67*cdf0e10cSrcweir 				{
68*cdf0e10cSrcweir 					aLeft = rfEB - rfPA;
69*cdf0e10cSrcweir 				}
70*cdf0e10cSrcweir 
71*cdf0e10cSrcweir 				if(aRight.equalZero())
72*cdf0e10cSrcweir 				{
73*cdf0e10cSrcweir 					aRight = rfEA - rfPB;
74*cdf0e10cSrcweir 				}
75*cdf0e10cSrcweir 
76*cdf0e10cSrcweir 				const double fCurrentAngle(aLeft.angle(aRight));
77*cdf0e10cSrcweir 
78*cdf0e10cSrcweir 				if(fabs(fCurrentAngle) > (F_PI - fAngleBound))
79*cdf0e10cSrcweir 				{
80*cdf0e10cSrcweir 					// end recursion
81*cdf0e10cSrcweir 					nMaxRecursionDepth = 0;
82*cdf0e10cSrcweir 				}
83*cdf0e10cSrcweir 				else
84*cdf0e10cSrcweir 				{
85*cdf0e10cSrcweir 					if(bAllowUnsharpen)
86*cdf0e10cSrcweir 					{
87*cdf0e10cSrcweir 						// #i37443# unsharpen criteria
88*cdf0e10cSrcweir #ifdef DBG_UTIL
89*cdf0e10cSrcweir 						fAngleBound *= fMultFactUnsharpen;
90*cdf0e10cSrcweir #else
91*cdf0e10cSrcweir 						fAngleBound *= FACTOR_FOR_UNSHARPEN;
92*cdf0e10cSrcweir #endif
93*cdf0e10cSrcweir 					}
94*cdf0e10cSrcweir 				}
95*cdf0e10cSrcweir 			}
96*cdf0e10cSrcweir 
97*cdf0e10cSrcweir 			if(nMaxRecursionDepth)
98*cdf0e10cSrcweir 			{
99*cdf0e10cSrcweir 				// divide at 0.5
100*cdf0e10cSrcweir 				const B2DPoint aS1L(average(rfPA, rfEA));
101*cdf0e10cSrcweir 				const B2DPoint aS1C(average(rfEA, rfEB));
102*cdf0e10cSrcweir 				const B2DPoint aS1R(average(rfEB, rfPB));
103*cdf0e10cSrcweir 				const B2DPoint aS2L(average(aS1L, aS1C));
104*cdf0e10cSrcweir 				const B2DPoint aS2R(average(aS1C, aS1R));
105*cdf0e10cSrcweir 				const B2DPoint aS3C(average(aS2L, aS2R));
106*cdf0e10cSrcweir 
107*cdf0e10cSrcweir 				// left recursion
108*cdf0e10cSrcweir 				ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
109*cdf0e10cSrcweir 
110*cdf0e10cSrcweir 				// right recursion
111*cdf0e10cSrcweir 				ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
112*cdf0e10cSrcweir 			}
113*cdf0e10cSrcweir 			else
114*cdf0e10cSrcweir 			{
115*cdf0e10cSrcweir 				rTarget.append(rfPB);
116*cdf0e10cSrcweir 			}
117*cdf0e10cSrcweir 		}
118*cdf0e10cSrcweir 
119*cdf0e10cSrcweir 		void ImpSubDivAngleStart(
120*cdf0e10cSrcweir 			const B2DPoint& rfPA,			// start point
121*cdf0e10cSrcweir 			const B2DPoint& rfEA,			// edge on A
122*cdf0e10cSrcweir 			const B2DPoint& rfEB,			// edge on B
123*cdf0e10cSrcweir 			const B2DPoint& rfPB,			// end point
124*cdf0e10cSrcweir 			B2DPolygon& rTarget,			// target polygon
125*cdf0e10cSrcweir 			const double& rfAngleBound,		// angle bound in [0.0 .. 2PI]
126*cdf0e10cSrcweir 			bool bAllowUnsharpen)			// #i37443# allow the criteria to get unsharp in recursions
127*cdf0e10cSrcweir 		{
128*cdf0e10cSrcweir 			sal_uInt16 nMaxRecursionDepth(8);
129*cdf0e10cSrcweir 			const B2DVector aLeft(rfEA - rfPA);
130*cdf0e10cSrcweir 			const B2DVector aRight(rfEB - rfPB);
131*cdf0e10cSrcweir 			bool bLeftEqualZero(aLeft.equalZero());
132*cdf0e10cSrcweir 			bool bRightEqualZero(aRight.equalZero());
133*cdf0e10cSrcweir 			bool bAllParallel(false);
134*cdf0e10cSrcweir 
135*cdf0e10cSrcweir 			if(bLeftEqualZero && bRightEqualZero)
136*cdf0e10cSrcweir 			{
137*cdf0e10cSrcweir 				nMaxRecursionDepth = 0;
138*cdf0e10cSrcweir 			}
139*cdf0e10cSrcweir 			else
140*cdf0e10cSrcweir 			{
141*cdf0e10cSrcweir 				const B2DVector aBase(rfPB - rfPA);
142*cdf0e10cSrcweir 				const bool bBaseEqualZero(aBase.equalZero()); // #i72104#
143*cdf0e10cSrcweir 
144*cdf0e10cSrcweir 				if(!bBaseEqualZero)
145*cdf0e10cSrcweir 				{
146*cdf0e10cSrcweir 					const bool bLeftParallel(bLeftEqualZero ? true : areParallel(aLeft, aBase));
147*cdf0e10cSrcweir 					const bool bRightParallel(bRightEqualZero ? true : areParallel(aRight, aBase));
148*cdf0e10cSrcweir 
149*cdf0e10cSrcweir 					if(bLeftParallel && bRightParallel)
150*cdf0e10cSrcweir 					{
151*cdf0e10cSrcweir 						bAllParallel = true;
152*cdf0e10cSrcweir 
153*cdf0e10cSrcweir 						if(!bLeftEqualZero)
154*cdf0e10cSrcweir 						{
155*cdf0e10cSrcweir 							double fFactor;
156*cdf0e10cSrcweir 
157*cdf0e10cSrcweir 							if(fabs(aBase.getX()) > fabs(aBase.getY()))
158*cdf0e10cSrcweir 							{
159*cdf0e10cSrcweir 								fFactor = aLeft.getX() / aBase.getX();
160*cdf0e10cSrcweir 							}
161*cdf0e10cSrcweir 							else
162*cdf0e10cSrcweir 							{
163*cdf0e10cSrcweir 								fFactor = aLeft.getY() / aBase.getY();
164*cdf0e10cSrcweir 							}
165*cdf0e10cSrcweir 
166*cdf0e10cSrcweir 							if(fFactor >= 0.0 && fFactor <= 1.0)
167*cdf0e10cSrcweir 							{
168*cdf0e10cSrcweir 								bLeftEqualZero = true;
169*cdf0e10cSrcweir 							}
170*cdf0e10cSrcweir 						}
171*cdf0e10cSrcweir 
172*cdf0e10cSrcweir 						if(!bRightEqualZero)
173*cdf0e10cSrcweir 						{
174*cdf0e10cSrcweir 							double fFactor;
175*cdf0e10cSrcweir 
176*cdf0e10cSrcweir 							if(fabs(aBase.getX()) > fabs(aBase.getY()))
177*cdf0e10cSrcweir 							{
178*cdf0e10cSrcweir 								fFactor = aRight.getX() / -aBase.getX();
179*cdf0e10cSrcweir 							}
180*cdf0e10cSrcweir 							else
181*cdf0e10cSrcweir 							{
182*cdf0e10cSrcweir 								fFactor = aRight.getY() / -aBase.getY();
183*cdf0e10cSrcweir 							}
184*cdf0e10cSrcweir 
185*cdf0e10cSrcweir 							if(fFactor >= 0.0 && fFactor <= 1.0)
186*cdf0e10cSrcweir 							{
187*cdf0e10cSrcweir 								bRightEqualZero = true;
188*cdf0e10cSrcweir 							}
189*cdf0e10cSrcweir 						}
190*cdf0e10cSrcweir 
191*cdf0e10cSrcweir 						if(bLeftEqualZero && bRightEqualZero)
192*cdf0e10cSrcweir 						{
193*cdf0e10cSrcweir 							nMaxRecursionDepth = 0;
194*cdf0e10cSrcweir 						}
195*cdf0e10cSrcweir 					}
196*cdf0e10cSrcweir 				}
197*cdf0e10cSrcweir 			}
198*cdf0e10cSrcweir 
199*cdf0e10cSrcweir 			if(nMaxRecursionDepth)
200*cdf0e10cSrcweir 			{
201*cdf0e10cSrcweir 				// divide at 0.5 ad test both edges for angle criteria
202*cdf0e10cSrcweir 				const B2DPoint aS1L(average(rfPA, rfEA));
203*cdf0e10cSrcweir 				const B2DPoint aS1C(average(rfEA, rfEB));
204*cdf0e10cSrcweir 				const B2DPoint aS1R(average(rfEB, rfPB));
205*cdf0e10cSrcweir 				const B2DPoint aS2L(average(aS1L, aS1C));
206*cdf0e10cSrcweir 				const B2DPoint aS2R(average(aS1C, aS1R));
207*cdf0e10cSrcweir 				const B2DPoint aS3C(average(aS2L, aS2R));
208*cdf0e10cSrcweir 
209*cdf0e10cSrcweir 				// test left
210*cdf0e10cSrcweir 				bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero);
211*cdf0e10cSrcweir 				if(!bAngleIsSmallerLeft)
212*cdf0e10cSrcweir 				{
213*cdf0e10cSrcweir 					const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104#
214*cdf0e10cSrcweir 					const B2DVector aRightLeft(aS2L - aS3C);
215*cdf0e10cSrcweir 					const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft));
216*cdf0e10cSrcweir 					bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound));
217*cdf0e10cSrcweir 				}
218*cdf0e10cSrcweir 
219*cdf0e10cSrcweir 				// test right
220*cdf0e10cSrcweir 				bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero);
221*cdf0e10cSrcweir 				if(!bAngleIsSmallerRight)
222*cdf0e10cSrcweir 				{
223*cdf0e10cSrcweir 					const B2DVector aLeftRight(aS2R - aS3C);
224*cdf0e10cSrcweir 					const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104#
225*cdf0e10cSrcweir 					const double fCurrentAngleRight(aLeftRight.angle(aRightRight));
226*cdf0e10cSrcweir 					bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound));
227*cdf0e10cSrcweir 				}
228*cdf0e10cSrcweir 
229*cdf0e10cSrcweir 				if(bAngleIsSmallerLeft && bAngleIsSmallerRight)
230*cdf0e10cSrcweir 				{
231*cdf0e10cSrcweir 					// no recursion necessary at all
232*cdf0e10cSrcweir 					nMaxRecursionDepth = 0;
233*cdf0e10cSrcweir 				}
234*cdf0e10cSrcweir 				else
235*cdf0e10cSrcweir 				{
236*cdf0e10cSrcweir 					// left
237*cdf0e10cSrcweir 					if(bAngleIsSmallerLeft)
238*cdf0e10cSrcweir 					{
239*cdf0e10cSrcweir 						rTarget.append(aS3C);
240*cdf0e10cSrcweir 					}
241*cdf0e10cSrcweir 					else
242*cdf0e10cSrcweir 					{
243*cdf0e10cSrcweir 						ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
244*cdf0e10cSrcweir 					}
245*cdf0e10cSrcweir 
246*cdf0e10cSrcweir 					// right
247*cdf0e10cSrcweir 					if(bAngleIsSmallerRight)
248*cdf0e10cSrcweir 					{
249*cdf0e10cSrcweir 						rTarget.append(rfPB);
250*cdf0e10cSrcweir 					}
251*cdf0e10cSrcweir 					else
252*cdf0e10cSrcweir 					{
253*cdf0e10cSrcweir 						ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
254*cdf0e10cSrcweir 					}
255*cdf0e10cSrcweir 				}
256*cdf0e10cSrcweir 			}
257*cdf0e10cSrcweir 
258*cdf0e10cSrcweir 			if(!nMaxRecursionDepth)
259*cdf0e10cSrcweir 			{
260*cdf0e10cSrcweir 				rTarget.append(rfPB);
261*cdf0e10cSrcweir 			}
262*cdf0e10cSrcweir 		}
263*cdf0e10cSrcweir 
264*cdf0e10cSrcweir 		void ImpSubDivDistance(
265*cdf0e10cSrcweir 			const B2DPoint& rfPA,			// start point
266*cdf0e10cSrcweir 			const B2DPoint& rfEA,			// edge on A
267*cdf0e10cSrcweir 			const B2DPoint& rfEB,			// edge on B
268*cdf0e10cSrcweir 			const B2DPoint& rfPB,			// end point
269*cdf0e10cSrcweir 			B2DPolygon& rTarget,			// target polygon
270*cdf0e10cSrcweir 			double fDistanceBound2,			// quadratic distance criteria
271*cdf0e10cSrcweir 			double fLastDistanceError2,		// the last quadratic distance error
272*cdf0e10cSrcweir 			sal_uInt16 nMaxRecursionDepth)	// endless loop protection
273*cdf0e10cSrcweir 		{
274*cdf0e10cSrcweir 			if(nMaxRecursionDepth)
275*cdf0e10cSrcweir 			{
276*cdf0e10cSrcweir 				// decide if another recursion is needed. If not, set
277*cdf0e10cSrcweir 				// nMaxRecursionDepth to zero
278*cdf0e10cSrcweir 
279*cdf0e10cSrcweir 				// Perform bezier flatness test (lecture notes from R. Schaback,
280*cdf0e10cSrcweir 				// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
281*cdf0e10cSrcweir 				//
282*cdf0e10cSrcweir 				// ||P(t) - L(t)|| <= max     ||b_j - b_0 - j/n(b_n - b_0)||
283*cdf0e10cSrcweir 				//                    0<=j<=n
284*cdf0e10cSrcweir 				//
285*cdf0e10cSrcweir 				// What is calculated here is an upper bound to the distance from
286*cdf0e10cSrcweir 				// a line through b_0 and b_3 (rfPA and P4 in our notation) and the
287*cdf0e10cSrcweir 				// curve. We can drop 0 and n from the running indices, since the
288*cdf0e10cSrcweir 				// argument of max becomes zero for those cases.
289*cdf0e10cSrcweir 				const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX()));
290*cdf0e10cSrcweir 				const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY()));
291*cdf0e10cSrcweir 				const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX()));
292*cdf0e10cSrcweir 				const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY()));
293*cdf0e10cSrcweir 				const double fDistanceError2(::std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y));
294*cdf0e10cSrcweir 
295*cdf0e10cSrcweir 				// stop if error measure does not improve anymore. This is a
296*cdf0e10cSrcweir 				// safety guard against floating point inaccuracies.
297*cdf0e10cSrcweir 				// stop if distance from line is guaranteed to be bounded by d
298*cdf0e10cSrcweir 				const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2);
299*cdf0e10cSrcweir 
300*cdf0e10cSrcweir 				if(bFurtherDivision)
301*cdf0e10cSrcweir 				{
302*cdf0e10cSrcweir 					// remember last error value
303*cdf0e10cSrcweir 					fLastDistanceError2 = fDistanceError2;
304*cdf0e10cSrcweir 				}
305*cdf0e10cSrcweir 				else
306*cdf0e10cSrcweir 				{
307*cdf0e10cSrcweir 					// stop recustion
308*cdf0e10cSrcweir 					nMaxRecursionDepth = 0;
309*cdf0e10cSrcweir 				}
310*cdf0e10cSrcweir 			}
311*cdf0e10cSrcweir 
312*cdf0e10cSrcweir 			if(nMaxRecursionDepth)
313*cdf0e10cSrcweir 			{
314*cdf0e10cSrcweir 				// divide at 0.5
315*cdf0e10cSrcweir 				const B2DPoint aS1L(average(rfPA, rfEA));
316*cdf0e10cSrcweir 				const B2DPoint aS1C(average(rfEA, rfEB));
317*cdf0e10cSrcweir 				const B2DPoint aS1R(average(rfEB, rfPB));
318*cdf0e10cSrcweir 				const B2DPoint aS2L(average(aS1L, aS1C));
319*cdf0e10cSrcweir 				const B2DPoint aS2R(average(aS1C, aS1R));
320*cdf0e10cSrcweir 				const B2DPoint aS3C(average(aS2L, aS2R));
321*cdf0e10cSrcweir 
322*cdf0e10cSrcweir 				// left recursion
323*cdf0e10cSrcweir 				ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
324*cdf0e10cSrcweir 
325*cdf0e10cSrcweir 				// right recursion
326*cdf0e10cSrcweir 				ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
327*cdf0e10cSrcweir 			}
328*cdf0e10cSrcweir 			else
329*cdf0e10cSrcweir 			{
330*cdf0e10cSrcweir 				rTarget.append(rfPB);
331*cdf0e10cSrcweir 			}
332*cdf0e10cSrcweir 		}
333*cdf0e10cSrcweir 	} // end of anonymous namespace
334*cdf0e10cSrcweir } // end of namespace basegfx
335*cdf0e10cSrcweir 
336*cdf0e10cSrcweir //////////////////////////////////////////////////////////////////////////////
337*cdf0e10cSrcweir 
338*cdf0e10cSrcweir namespace basegfx
339*cdf0e10cSrcweir {
340*cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier& rBezier)
341*cdf0e10cSrcweir 	:	maStartPoint(rBezier.maStartPoint),
342*cdf0e10cSrcweir 		maEndPoint(rBezier.maEndPoint),
343*cdf0e10cSrcweir 		maControlPointA(rBezier.maControlPointA),
344*cdf0e10cSrcweir 		maControlPointB(rBezier.maControlPointB)
345*cdf0e10cSrcweir 	{
346*cdf0e10cSrcweir 	}
347*cdf0e10cSrcweir 
348*cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier()
349*cdf0e10cSrcweir 	{
350*cdf0e10cSrcweir 	}
351*cdf0e10cSrcweir 
352*cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rEnd)
353*cdf0e10cSrcweir 	:	maStartPoint(rStart),
354*cdf0e10cSrcweir 		maEndPoint(rEnd),
355*cdf0e10cSrcweir 		maControlPointA(rStart),
356*cdf0e10cSrcweir 		maControlPointB(rEnd)
357*cdf0e10cSrcweir 	{
358*cdf0e10cSrcweir 	}
359*cdf0e10cSrcweir 
360*cdf0e10cSrcweir 	B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd)
361*cdf0e10cSrcweir 	:	maStartPoint(rStart),
362*cdf0e10cSrcweir 		maEndPoint(rEnd),
363*cdf0e10cSrcweir 		maControlPointA(rControlPointA),
364*cdf0e10cSrcweir 		maControlPointB(rControlPointB)
365*cdf0e10cSrcweir 	{
366*cdf0e10cSrcweir 	}
367*cdf0e10cSrcweir 
368*cdf0e10cSrcweir 	B2DCubicBezier::~B2DCubicBezier()
369*cdf0e10cSrcweir 	{
370*cdf0e10cSrcweir 	}
371*cdf0e10cSrcweir 
372*cdf0e10cSrcweir 	// assignment operator
373*cdf0e10cSrcweir 	B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier& rBezier)
374*cdf0e10cSrcweir 	{
375*cdf0e10cSrcweir 		maStartPoint = rBezier.maStartPoint;
376*cdf0e10cSrcweir 		maEndPoint = rBezier.maEndPoint;
377*cdf0e10cSrcweir 		maControlPointA = rBezier.maControlPointA;
378*cdf0e10cSrcweir 		maControlPointB = rBezier.maControlPointB;
379*cdf0e10cSrcweir 
380*cdf0e10cSrcweir 		return *this;
381*cdf0e10cSrcweir 	}
382*cdf0e10cSrcweir 
383*cdf0e10cSrcweir 	// compare operators
384*cdf0e10cSrcweir 	bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const
385*cdf0e10cSrcweir 	{
386*cdf0e10cSrcweir 		return (
387*cdf0e10cSrcweir 			maStartPoint == rBezier.maStartPoint
388*cdf0e10cSrcweir 			&& maEndPoint == rBezier.maEndPoint
389*cdf0e10cSrcweir 			&& maControlPointA == rBezier.maControlPointA
390*cdf0e10cSrcweir 			&& maControlPointB == rBezier.maControlPointB
391*cdf0e10cSrcweir 		);
392*cdf0e10cSrcweir 	}
393*cdf0e10cSrcweir 
394*cdf0e10cSrcweir 	bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const
395*cdf0e10cSrcweir 	{
396*cdf0e10cSrcweir 		return (
397*cdf0e10cSrcweir 			maStartPoint != rBezier.maStartPoint
398*cdf0e10cSrcweir 			|| maEndPoint != rBezier.maEndPoint
399*cdf0e10cSrcweir 			|| maControlPointA != rBezier.maControlPointA
400*cdf0e10cSrcweir 			|| maControlPointB != rBezier.maControlPointB
401*cdf0e10cSrcweir 		);
402*cdf0e10cSrcweir 	}
403*cdf0e10cSrcweir 
404*cdf0e10cSrcweir     bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const
405*cdf0e10cSrcweir     {
406*cdf0e10cSrcweir 		return (
407*cdf0e10cSrcweir 			maStartPoint.equal(rBezier.maStartPoint)
408*cdf0e10cSrcweir 			&& maEndPoint.equal(rBezier.maEndPoint)
409*cdf0e10cSrcweir 			&& maControlPointA.equal(rBezier.maControlPointA)
410*cdf0e10cSrcweir 			&& maControlPointB.equal(rBezier.maControlPointB)
411*cdf0e10cSrcweir 		);
412*cdf0e10cSrcweir     }
413*cdf0e10cSrcweir 
414*cdf0e10cSrcweir 	// test if vectors are used
415*cdf0e10cSrcweir 	bool B2DCubicBezier::isBezier() const
416*cdf0e10cSrcweir 	{
417*cdf0e10cSrcweir 		if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
418*cdf0e10cSrcweir 		{
419*cdf0e10cSrcweir 			return true;
420*cdf0e10cSrcweir 		}
421*cdf0e10cSrcweir 
422*cdf0e10cSrcweir 		return false;
423*cdf0e10cSrcweir 	}
424*cdf0e10cSrcweir 
425*cdf0e10cSrcweir 	void B2DCubicBezier::testAndSolveTrivialBezier()
426*cdf0e10cSrcweir 	{
427*cdf0e10cSrcweir 		if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
428*cdf0e10cSrcweir 		{
429*cdf0e10cSrcweir 			const B2DVector aEdge(maEndPoint - maStartPoint);
430*cdf0e10cSrcweir 
431*cdf0e10cSrcweir 			// controls parallel to edge can be trivial. No edge -> not parallel -> control can
432*cdf0e10cSrcweir             // still not be trivial (e.g. ballon loop)
433*cdf0e10cSrcweir 			if(!aEdge.equalZero())
434*cdf0e10cSrcweir 			{
435*cdf0e10cSrcweir                 // get control vectors
436*cdf0e10cSrcweir 				const B2DVector aVecA(maControlPointA - maStartPoint);
437*cdf0e10cSrcweir 				const B2DVector aVecB(maControlPointB - maEndPoint);
438*cdf0e10cSrcweir 
439*cdf0e10cSrcweir                 // check if trivial per se
440*cdf0e10cSrcweir                 bool bAIsTrivial(aVecA.equalZero());
441*cdf0e10cSrcweir                 bool bBIsTrivial(aVecB.equalZero());
442*cdf0e10cSrcweir 
443*cdf0e10cSrcweir                 // #i102241# prepare inverse edge length to normalize cross values;
444*cdf0e10cSrcweir                 // else the small compare value used in fTools::equalZero
445*cdf0e10cSrcweir                 // will be length dependent and this detection will work as less
446*cdf0e10cSrcweir                 // precise as longer the edge is. In principle, the length of the control
447*cdf0e10cSrcweir 				// vector would need to be used too, but to be trivial it is assumed to
448*cdf0e10cSrcweir 				// be of roughly equal length to the edge, so edge length can be used
449*cdf0e10cSrcweir 				// for both. Only needed when one of both is not trivial per se.
450*cdf0e10cSrcweir                 const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial
451*cdf0e10cSrcweir 					? 1.0
452*cdf0e10cSrcweir 					: 1.0 / aEdge.getLength());
453*cdf0e10cSrcweir 
454*cdf0e10cSrcweir 				// if A is not zero, check if it could be
455*cdf0e10cSrcweir 				if(!bAIsTrivial)
456*cdf0e10cSrcweir 				{
457*cdf0e10cSrcweir 					// #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what
458*cdf0e10cSrcweir 					// we need here with the precision we need
459*cdf0e10cSrcweir 					const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength);
460*cdf0e10cSrcweir 
461*cdf0e10cSrcweir 					if(fTools::equalZero(fCross))
462*cdf0e10cSrcweir 					{
463*cdf0e10cSrcweir 						// get scale to edge. Use bigger distance for numeric quality
464*cdf0e10cSrcweir 						const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
465*cdf0e10cSrcweir 							? aVecA.getX() / aEdge.getX()
466*cdf0e10cSrcweir 							: aVecA.getY() / aEdge.getY());
467*cdf0e10cSrcweir 
468*cdf0e10cSrcweir 						// relative end point of vector in edge range?
469*cdf0e10cSrcweir 						if(fTools::moreOrEqual(fScale, 0.0) && fTools::lessOrEqual(fScale, 1.0))
470*cdf0e10cSrcweir 						{
471*cdf0e10cSrcweir 							bAIsTrivial = true;
472*cdf0e10cSrcweir 						}
473*cdf0e10cSrcweir 					}
474*cdf0e10cSrcweir 				}
475*cdf0e10cSrcweir 
476*cdf0e10cSrcweir                 // if B is not zero, check if it could be, but only if A is already trivial;
477*cdf0e10cSrcweir                 // else solve to trivial will not be possible for whole edge
478*cdf0e10cSrcweir 				if(bAIsTrivial && !bBIsTrivial)
479*cdf0e10cSrcweir 				{
480*cdf0e10cSrcweir 					// parallel to edge? Check aVecB, aEdge
481*cdf0e10cSrcweir 					const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength);
482*cdf0e10cSrcweir 
483*cdf0e10cSrcweir 					if(fTools::equalZero(fCross))
484*cdf0e10cSrcweir 					{
485*cdf0e10cSrcweir 						// get scale to edge. Use bigger distance for numeric quality
486*cdf0e10cSrcweir 						const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
487*cdf0e10cSrcweir 							? aVecB.getX() / aEdge.getX()
488*cdf0e10cSrcweir 							: aVecB.getY() / aEdge.getY());
489*cdf0e10cSrcweir 
490*cdf0e10cSrcweir 						// end point of vector in edge range? Caution: controlB is directed AGAINST edge
491*cdf0e10cSrcweir 						if(fTools::lessOrEqual(fScale, 0.0) && fTools::moreOrEqual(fScale, -1.0))
492*cdf0e10cSrcweir 						{
493*cdf0e10cSrcweir 							bBIsTrivial = true;
494*cdf0e10cSrcweir 						}
495*cdf0e10cSrcweir 					}
496*cdf0e10cSrcweir 				}
497*cdf0e10cSrcweir 
498*cdf0e10cSrcweir                 // if both are/can be reduced, do it.
499*cdf0e10cSrcweir 				// Not possible if only one is/can be reduced (!)
500*cdf0e10cSrcweir 				if(bAIsTrivial && bBIsTrivial)
501*cdf0e10cSrcweir 				{
502*cdf0e10cSrcweir 					maControlPointA = maStartPoint;
503*cdf0e10cSrcweir 					maControlPointB = maEndPoint;
504*cdf0e10cSrcweir 				}
505*cdf0e10cSrcweir 			}
506*cdf0e10cSrcweir 		}
507*cdf0e10cSrcweir 	}
508*cdf0e10cSrcweir 
509*cdf0e10cSrcweir     namespace {
510*cdf0e10cSrcweir         double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch)
511*cdf0e10cSrcweir         {
512*cdf0e10cSrcweir             const double fEdgeLength(rEdge.getEdgeLength());
513*cdf0e10cSrcweir             const double fControlPolygonLength(rEdge.getControlPolygonLength());
514*cdf0e10cSrcweir             const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength));
515*cdf0e10cSrcweir 
516*cdf0e10cSrcweir             if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation))
517*cdf0e10cSrcweir             {
518*cdf0e10cSrcweir                 return (fEdgeLength + fControlPolygonLength) * 0.5;
519*cdf0e10cSrcweir             }
520*cdf0e10cSrcweir             else
521*cdf0e10cSrcweir             {
522*cdf0e10cSrcweir                 B2DCubicBezier aLeft, aRight;
523*cdf0e10cSrcweir                 const double fNewDeviation(fDeviation * 0.5);
524*cdf0e10cSrcweir                 const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1);
525*cdf0e10cSrcweir 
526*cdf0e10cSrcweir                 rEdge.split(0.5, &aLeft, &aRight);
527*cdf0e10cSrcweir 
528*cdf0e10cSrcweir                 return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch)
529*cdf0e10cSrcweir                     + impGetLength(aRight, fNewDeviation, nNewRecursionWatch);
530*cdf0e10cSrcweir             }
531*cdf0e10cSrcweir         }
532*cdf0e10cSrcweir     }
533*cdf0e10cSrcweir 
534*cdf0e10cSrcweir 	double B2DCubicBezier::getLength(double fDeviation) const
535*cdf0e10cSrcweir     {
536*cdf0e10cSrcweir         if(isBezier())
537*cdf0e10cSrcweir         {
538*cdf0e10cSrcweir             if(fDeviation < 0.00000001)
539*cdf0e10cSrcweir             {
540*cdf0e10cSrcweir                 fDeviation = 0.00000001;
541*cdf0e10cSrcweir             }
542*cdf0e10cSrcweir 
543*cdf0e10cSrcweir             return impGetLength(*this, fDeviation, 6);
544*cdf0e10cSrcweir         }
545*cdf0e10cSrcweir         else
546*cdf0e10cSrcweir         {
547*cdf0e10cSrcweir             return B2DVector(getEndPoint() - getStartPoint()).getLength();
548*cdf0e10cSrcweir         }
549*cdf0e10cSrcweir     }
550*cdf0e10cSrcweir 
551*cdf0e10cSrcweir 	double B2DCubicBezier::getEdgeLength() const
552*cdf0e10cSrcweir 	{
553*cdf0e10cSrcweir 		const B2DVector aEdge(maEndPoint - maStartPoint);
554*cdf0e10cSrcweir 		return aEdge.getLength();
555*cdf0e10cSrcweir 	}
556*cdf0e10cSrcweir 
557*cdf0e10cSrcweir 	double B2DCubicBezier::getControlPolygonLength() const
558*cdf0e10cSrcweir 	{
559*cdf0e10cSrcweir 		const B2DVector aVectorA(maControlPointA - maStartPoint);
560*cdf0e10cSrcweir 		const B2DVector aVectorB(maEndPoint - maControlPointB);
561*cdf0e10cSrcweir 
562*cdf0e10cSrcweir 		if(!aVectorA.equalZero() || !aVectorB.equalZero())
563*cdf0e10cSrcweir 		{
564*cdf0e10cSrcweir 			const B2DVector aTop(maControlPointB - maControlPointA);
565*cdf0e10cSrcweir 			return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength());
566*cdf0e10cSrcweir 		}
567*cdf0e10cSrcweir 		else
568*cdf0e10cSrcweir 		{
569*cdf0e10cSrcweir 			return getEdgeLength();
570*cdf0e10cSrcweir 		}
571*cdf0e10cSrcweir 	}
572*cdf0e10cSrcweir 
573*cdf0e10cSrcweir 	void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound, bool bAllowUnsharpen) const
574*cdf0e10cSrcweir 	{
575*cdf0e10cSrcweir 		if(isBezier())
576*cdf0e10cSrcweir 		{
577*cdf0e10cSrcweir 			// use support method #i37443# and allow unsharpen the criteria
578*cdf0e10cSrcweir 			ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, fAngleBound * F_PI180, bAllowUnsharpen);
579*cdf0e10cSrcweir 		}
580*cdf0e10cSrcweir 		else
581*cdf0e10cSrcweir 		{
582*cdf0e10cSrcweir 			rTarget.append(getEndPoint());
583*cdf0e10cSrcweir 		}
584*cdf0e10cSrcweir 	}
585*cdf0e10cSrcweir 
586*cdf0e10cSrcweir     B2DVector B2DCubicBezier::getTangent(double t) const
587*cdf0e10cSrcweir     {
588*cdf0e10cSrcweir         if(fTools::lessOrEqual(t, 0.0))
589*cdf0e10cSrcweir         {
590*cdf0e10cSrcweir             // tangent in start point
591*cdf0e10cSrcweir             B2DVector aTangent(getControlPointA() - getStartPoint());
592*cdf0e10cSrcweir 
593*cdf0e10cSrcweir             if(!aTangent.equalZero())
594*cdf0e10cSrcweir             {
595*cdf0e10cSrcweir                 return aTangent;
596*cdf0e10cSrcweir             }
597*cdf0e10cSrcweir 
598*cdf0e10cSrcweir             // start point and control vector are the same, fallback
599*cdf0e10cSrcweir             // to implicit start vector to control point B
600*cdf0e10cSrcweir             aTangent = (getControlPointB() - getStartPoint()) * 0.3;
601*cdf0e10cSrcweir 
602*cdf0e10cSrcweir             if(!aTangent.equalZero())
603*cdf0e10cSrcweir             {
604*cdf0e10cSrcweir                 return aTangent;
605*cdf0e10cSrcweir             }
606*cdf0e10cSrcweir 
607*cdf0e10cSrcweir             // not a bezier at all, return edge vector
608*cdf0e10cSrcweir             return (getEndPoint() - getStartPoint()) * 0.3;
609*cdf0e10cSrcweir         }
610*cdf0e10cSrcweir         else if(fTools::moreOrEqual(t, 1.0))
611*cdf0e10cSrcweir         {
612*cdf0e10cSrcweir             // tangent in end point
613*cdf0e10cSrcweir             B2DVector aTangent(getEndPoint() - getControlPointB());
614*cdf0e10cSrcweir 
615*cdf0e10cSrcweir             if(!aTangent.equalZero())
616*cdf0e10cSrcweir             {
617*cdf0e10cSrcweir                 return aTangent;
618*cdf0e10cSrcweir             }
619*cdf0e10cSrcweir 
620*cdf0e10cSrcweir             // end point and control vector are the same, fallback
621*cdf0e10cSrcweir             // to implicit start vector from control point A
622*cdf0e10cSrcweir             aTangent = (getEndPoint() - getControlPointA()) * 0.3;
623*cdf0e10cSrcweir 
624*cdf0e10cSrcweir             if(!aTangent.equalZero())
625*cdf0e10cSrcweir             {
626*cdf0e10cSrcweir                 return aTangent;
627*cdf0e10cSrcweir             }
628*cdf0e10cSrcweir 
629*cdf0e10cSrcweir             // not a bezier at all, return edge vector
630*cdf0e10cSrcweir             return (getEndPoint() - getStartPoint()) * 0.3;
631*cdf0e10cSrcweir         }
632*cdf0e10cSrcweir         else
633*cdf0e10cSrcweir         {
634*cdf0e10cSrcweir             // t is in ]0.0 .. 1.0[. Split and extract
635*cdf0e10cSrcweir             B2DCubicBezier aRight;
636*cdf0e10cSrcweir             split(t, 0, &aRight);
637*cdf0e10cSrcweir 
638*cdf0e10cSrcweir             return aRight.getControlPointA() - aRight.getStartPoint();
639*cdf0e10cSrcweir         }
640*cdf0e10cSrcweir     }
641*cdf0e10cSrcweir 
642*cdf0e10cSrcweir 	// #i37443# adaptive subdivide by nCount subdivisions
643*cdf0e10cSrcweir 	void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const
644*cdf0e10cSrcweir 	{
645*cdf0e10cSrcweir 		const double fLenFact(1.0 / static_cast< double >(nCount + 1));
646*cdf0e10cSrcweir 
647*cdf0e10cSrcweir 		for(sal_uInt32 a(1); a <= nCount; a++)
648*cdf0e10cSrcweir 		{
649*cdf0e10cSrcweir 			const double fPos(static_cast< double >(a) * fLenFact);
650*cdf0e10cSrcweir 			rTarget.append(interpolatePoint(fPos));
651*cdf0e10cSrcweir 		}
652*cdf0e10cSrcweir 
653*cdf0e10cSrcweir 		rTarget.append(getEndPoint());
654*cdf0e10cSrcweir 	}
655*cdf0e10cSrcweir 
656*cdf0e10cSrcweir 	// adaptive subdivide by distance
657*cdf0e10cSrcweir 	void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const
658*cdf0e10cSrcweir 	{
659*cdf0e10cSrcweir 		if(isBezier())
660*cdf0e10cSrcweir 		{
661*cdf0e10cSrcweir 			ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget,
662*cdf0e10cSrcweir 				fDistanceBound * fDistanceBound, ::std::numeric_limits<double>::max(), 30);
663*cdf0e10cSrcweir 		}
664*cdf0e10cSrcweir 		else
665*cdf0e10cSrcweir 		{
666*cdf0e10cSrcweir 			rTarget.append(getEndPoint());
667*cdf0e10cSrcweir 		}
668*cdf0e10cSrcweir 	}
669*cdf0e10cSrcweir 
670*cdf0e10cSrcweir 	B2DPoint B2DCubicBezier::interpolatePoint(double t) const
671*cdf0e10cSrcweir 	{
672*cdf0e10cSrcweir 		OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)");
673*cdf0e10cSrcweir 
674*cdf0e10cSrcweir 		if(isBezier())
675*cdf0e10cSrcweir 		{
676*cdf0e10cSrcweir 			const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
677*cdf0e10cSrcweir 			const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
678*cdf0e10cSrcweir 			const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
679*cdf0e10cSrcweir 			const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
680*cdf0e10cSrcweir 			const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
681*cdf0e10cSrcweir 
682*cdf0e10cSrcweir 			return interpolate(aS2L, aS2R, t);
683*cdf0e10cSrcweir 		}
684*cdf0e10cSrcweir 		else
685*cdf0e10cSrcweir 		{
686*cdf0e10cSrcweir 			return interpolate(maStartPoint, maEndPoint, t);
687*cdf0e10cSrcweir 		}
688*cdf0e10cSrcweir 	}
689*cdf0e10cSrcweir 
690*cdf0e10cSrcweir 	double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const
691*cdf0e10cSrcweir 	{
692*cdf0e10cSrcweir 		const sal_uInt32 nInitialDivisions(3L);
693*cdf0e10cSrcweir 		B2DPolygon aInitialPolygon;
694*cdf0e10cSrcweir 
695*cdf0e10cSrcweir 		// as start make a fix division, creates nInitialDivisions + 2L points
696*cdf0e10cSrcweir 		aInitialPolygon.append(getStartPoint());
697*cdf0e10cSrcweir 		adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions);
698*cdf0e10cSrcweir 
699*cdf0e10cSrcweir 		// now look for the closest point
700*cdf0e10cSrcweir 		const sal_uInt32 nPointCount(aInitialPolygon.count());
701*cdf0e10cSrcweir 		B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0L));
702*cdf0e10cSrcweir 		double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY());
703*cdf0e10cSrcweir 		double fNewQuadDist;
704*cdf0e10cSrcweir 		sal_uInt32 nSmallestIndex(0L);
705*cdf0e10cSrcweir 
706*cdf0e10cSrcweir 		for(sal_uInt32 a(1L); a < nPointCount; a++)
707*cdf0e10cSrcweir 		{
708*cdf0e10cSrcweir 			aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a));
709*cdf0e10cSrcweir 			fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
710*cdf0e10cSrcweir 
711*cdf0e10cSrcweir 			if(fNewQuadDist < fQuadDist)
712*cdf0e10cSrcweir 			{
713*cdf0e10cSrcweir 				fQuadDist = fNewQuadDist;
714*cdf0e10cSrcweir 				nSmallestIndex = a;
715*cdf0e10cSrcweir 			}
716*cdf0e10cSrcweir 		}
717*cdf0e10cSrcweir 
718*cdf0e10cSrcweir 		// look right and left for even smaller distances
719*cdf0e10cSrcweir 		double fStepValue(1.0 / (double)((nPointCount - 1L) * 2L)); // half the edge step width
720*cdf0e10cSrcweir 		double fPosition((double)nSmallestIndex / (double)(nPointCount - 1L));
721*cdf0e10cSrcweir 		bool bDone(false);
722*cdf0e10cSrcweir 
723*cdf0e10cSrcweir 		while(!bDone)
724*cdf0e10cSrcweir 		{
725*cdf0e10cSrcweir 			if(!bDone)
726*cdf0e10cSrcweir 			{
727*cdf0e10cSrcweir 				// test left
728*cdf0e10cSrcweir 				double fPosLeft(fPosition - fStepValue);
729*cdf0e10cSrcweir 
730*cdf0e10cSrcweir 				if(fPosLeft < 0.0)
731*cdf0e10cSrcweir 				{
732*cdf0e10cSrcweir 					fPosLeft = 0.0;
733*cdf0e10cSrcweir 					aVector = B2DVector(rTestPoint - maStartPoint);
734*cdf0e10cSrcweir 				}
735*cdf0e10cSrcweir 				else
736*cdf0e10cSrcweir 				{
737*cdf0e10cSrcweir 					aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft));
738*cdf0e10cSrcweir 				}
739*cdf0e10cSrcweir 
740*cdf0e10cSrcweir 				fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
741*cdf0e10cSrcweir 
742*cdf0e10cSrcweir 				if(fTools::less(fNewQuadDist, fQuadDist))
743*cdf0e10cSrcweir 				{
744*cdf0e10cSrcweir 					fQuadDist = fNewQuadDist;
745*cdf0e10cSrcweir 					fPosition = fPosLeft;
746*cdf0e10cSrcweir 				}
747*cdf0e10cSrcweir 				else
748*cdf0e10cSrcweir 				{
749*cdf0e10cSrcweir 					// test right
750*cdf0e10cSrcweir 					double fPosRight(fPosition + fStepValue);
751*cdf0e10cSrcweir 
752*cdf0e10cSrcweir 					if(fPosRight > 1.0)
753*cdf0e10cSrcweir 					{
754*cdf0e10cSrcweir 						fPosRight = 1.0;
755*cdf0e10cSrcweir 						aVector = B2DVector(rTestPoint - maEndPoint);
756*cdf0e10cSrcweir 					}
757*cdf0e10cSrcweir 					else
758*cdf0e10cSrcweir 					{
759*cdf0e10cSrcweir 						aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight));
760*cdf0e10cSrcweir 					}
761*cdf0e10cSrcweir 
762*cdf0e10cSrcweir 					fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
763*cdf0e10cSrcweir 
764*cdf0e10cSrcweir 					if(fTools::less(fNewQuadDist, fQuadDist))
765*cdf0e10cSrcweir 					{
766*cdf0e10cSrcweir 						fQuadDist = fNewQuadDist;
767*cdf0e10cSrcweir 						fPosition = fPosRight;
768*cdf0e10cSrcweir 					}
769*cdf0e10cSrcweir 					else
770*cdf0e10cSrcweir 					{
771*cdf0e10cSrcweir 						// not less left or right, done
772*cdf0e10cSrcweir 						bDone = true;
773*cdf0e10cSrcweir 					}
774*cdf0e10cSrcweir 				}
775*cdf0e10cSrcweir 			}
776*cdf0e10cSrcweir 
777*cdf0e10cSrcweir 			if(0.0 == fPosition || 1.0 == fPosition)
778*cdf0e10cSrcweir 			{
779*cdf0e10cSrcweir 				// if we are completely left or right, we are done
780*cdf0e10cSrcweir 				bDone = true;
781*cdf0e10cSrcweir 			}
782*cdf0e10cSrcweir 
783*cdf0e10cSrcweir 			if(!bDone)
784*cdf0e10cSrcweir 			{
785*cdf0e10cSrcweir 				// prepare next step value
786*cdf0e10cSrcweir 				fStepValue /= 2.0;
787*cdf0e10cSrcweir 			}
788*cdf0e10cSrcweir 		}
789*cdf0e10cSrcweir 
790*cdf0e10cSrcweir 		rCut = fPosition;
791*cdf0e10cSrcweir 		return sqrt(fQuadDist);
792*cdf0e10cSrcweir 	}
793*cdf0e10cSrcweir 
794*cdf0e10cSrcweir 	void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const
795*cdf0e10cSrcweir 	{
796*cdf0e10cSrcweir 		OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)");
797*cdf0e10cSrcweir 
798*cdf0e10cSrcweir 		if(!pBezierA && !pBezierB)
799*cdf0e10cSrcweir 		{
800*cdf0e10cSrcweir 			return;
801*cdf0e10cSrcweir 		}
802*cdf0e10cSrcweir 
803*cdf0e10cSrcweir 		if(isBezier())
804*cdf0e10cSrcweir 		{
805*cdf0e10cSrcweir 			const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
806*cdf0e10cSrcweir 			const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
807*cdf0e10cSrcweir 			const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
808*cdf0e10cSrcweir 			const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
809*cdf0e10cSrcweir 			const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
810*cdf0e10cSrcweir 			const B2DPoint aS3C(interpolate(aS2L, aS2R, t));
811*cdf0e10cSrcweir 
812*cdf0e10cSrcweir 			if(pBezierA)
813*cdf0e10cSrcweir 			{
814*cdf0e10cSrcweir 				pBezierA->setStartPoint(maStartPoint);
815*cdf0e10cSrcweir 				pBezierA->setEndPoint(aS3C);
816*cdf0e10cSrcweir 				pBezierA->setControlPointA(aS1L);
817*cdf0e10cSrcweir 				pBezierA->setControlPointB(aS2L);
818*cdf0e10cSrcweir 			}
819*cdf0e10cSrcweir 
820*cdf0e10cSrcweir 			if(pBezierB)
821*cdf0e10cSrcweir 			{
822*cdf0e10cSrcweir 				pBezierB->setStartPoint(aS3C);
823*cdf0e10cSrcweir 				pBezierB->setEndPoint(maEndPoint);
824*cdf0e10cSrcweir 				pBezierB->setControlPointA(aS2R);
825*cdf0e10cSrcweir 				pBezierB->setControlPointB(aS1R);
826*cdf0e10cSrcweir 			}
827*cdf0e10cSrcweir 		}
828*cdf0e10cSrcweir 		else
829*cdf0e10cSrcweir 		{
830*cdf0e10cSrcweir 			const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t));
831*cdf0e10cSrcweir 
832*cdf0e10cSrcweir 			if(pBezierA)
833*cdf0e10cSrcweir 			{
834*cdf0e10cSrcweir 				pBezierA->setStartPoint(maStartPoint);
835*cdf0e10cSrcweir 				pBezierA->setEndPoint(aSplit);
836*cdf0e10cSrcweir 				pBezierA->setControlPointA(maStartPoint);
837*cdf0e10cSrcweir 				pBezierA->setControlPointB(aSplit);
838*cdf0e10cSrcweir 			}
839*cdf0e10cSrcweir 
840*cdf0e10cSrcweir 			if(pBezierB)
841*cdf0e10cSrcweir 			{
842*cdf0e10cSrcweir 				pBezierB->setStartPoint(aSplit);
843*cdf0e10cSrcweir 				pBezierB->setEndPoint(maEndPoint);
844*cdf0e10cSrcweir 				pBezierB->setControlPointA(aSplit);
845*cdf0e10cSrcweir 				pBezierB->setControlPointB(maEndPoint);
846*cdf0e10cSrcweir 			}
847*cdf0e10cSrcweir 		}
848*cdf0e10cSrcweir 	}
849*cdf0e10cSrcweir 
850*cdf0e10cSrcweir 	B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const
851*cdf0e10cSrcweir 	{
852*cdf0e10cSrcweir 		B2DCubicBezier aRetval;
853*cdf0e10cSrcweir 
854*cdf0e10cSrcweir 		if(fTools::more(fStart, 1.0))
855*cdf0e10cSrcweir 		{
856*cdf0e10cSrcweir 			fStart = 1.0;
857*cdf0e10cSrcweir 		}
858*cdf0e10cSrcweir 		else if(fTools::less(fStart, 0.0))
859*cdf0e10cSrcweir 		{
860*cdf0e10cSrcweir 			fStart = 0.0;
861*cdf0e10cSrcweir 		}
862*cdf0e10cSrcweir 
863*cdf0e10cSrcweir 		if(fTools::more(fEnd, 1.0))
864*cdf0e10cSrcweir 		{
865*cdf0e10cSrcweir 			fEnd = 1.0;
866*cdf0e10cSrcweir 		}
867*cdf0e10cSrcweir 		else if(fTools::less(fEnd, 0.0))
868*cdf0e10cSrcweir 		{
869*cdf0e10cSrcweir 			fEnd = 0.0;
870*cdf0e10cSrcweir 		}
871*cdf0e10cSrcweir 
872*cdf0e10cSrcweir 		if(fEnd <= fStart)
873*cdf0e10cSrcweir 		{
874*cdf0e10cSrcweir 			// empty or NULL, create single point at center
875*cdf0e10cSrcweir 			const double fSplit((fEnd + fStart) * 0.5);
876*cdf0e10cSrcweir 			const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit));
877*cdf0e10cSrcweir 			aRetval.setStartPoint(aPoint);
878*cdf0e10cSrcweir 			aRetval.setEndPoint(aPoint);
879*cdf0e10cSrcweir 			aRetval.setControlPointA(aPoint);
880*cdf0e10cSrcweir 			aRetval.setControlPointB(aPoint);
881*cdf0e10cSrcweir 		}
882*cdf0e10cSrcweir 		else
883*cdf0e10cSrcweir 		{
884*cdf0e10cSrcweir 			if(isBezier())
885*cdf0e10cSrcweir 			{
886*cdf0e10cSrcweir 				// copy bezier; cut off right, then cut off left. Do not forget to
887*cdf0e10cSrcweir 				// adapt cut value when both cuts happen
888*cdf0e10cSrcweir 				const bool bEndIsOne(fTools::equal(fEnd, 1.0));
889*cdf0e10cSrcweir 				const bool bStartIsZero(fTools::equalZero(fStart));
890*cdf0e10cSrcweir 				aRetval = *this;
891*cdf0e10cSrcweir 
892*cdf0e10cSrcweir 				if(!bEndIsOne)
893*cdf0e10cSrcweir 				{
894*cdf0e10cSrcweir 					aRetval.split(fEnd, &aRetval, 0);
895*cdf0e10cSrcweir 
896*cdf0e10cSrcweir 					if(!bStartIsZero)
897*cdf0e10cSrcweir 					{
898*cdf0e10cSrcweir 						fStart /= fEnd;
899*cdf0e10cSrcweir 					}
900*cdf0e10cSrcweir 				}
901*cdf0e10cSrcweir 
902*cdf0e10cSrcweir 				if(!bStartIsZero)
903*cdf0e10cSrcweir 				{
904*cdf0e10cSrcweir 					aRetval.split(fStart, 0, &aRetval);
905*cdf0e10cSrcweir 				}
906*cdf0e10cSrcweir 			}
907*cdf0e10cSrcweir 			else
908*cdf0e10cSrcweir 			{
909*cdf0e10cSrcweir 				// no bezier, create simple edge
910*cdf0e10cSrcweir 				const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart));
911*cdf0e10cSrcweir 				const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd));
912*cdf0e10cSrcweir 				aRetval.setStartPoint(aPointA);
913*cdf0e10cSrcweir 				aRetval.setEndPoint(aPointB);
914*cdf0e10cSrcweir 				aRetval.setControlPointA(aPointA);
915*cdf0e10cSrcweir 				aRetval.setControlPointB(aPointB);
916*cdf0e10cSrcweir 			}
917*cdf0e10cSrcweir 		}
918*cdf0e10cSrcweir 
919*cdf0e10cSrcweir 		return aRetval;
920*cdf0e10cSrcweir 	}
921*cdf0e10cSrcweir 
922*cdf0e10cSrcweir 	B2DRange B2DCubicBezier::getRange() const
923*cdf0e10cSrcweir 	{
924*cdf0e10cSrcweir 		B2DRange aRetval(maStartPoint, maEndPoint);
925*cdf0e10cSrcweir 
926*cdf0e10cSrcweir 		aRetval.expand(maControlPointA);
927*cdf0e10cSrcweir 		aRetval.expand(maControlPointB);
928*cdf0e10cSrcweir 
929*cdf0e10cSrcweir 		return aRetval;
930*cdf0e10cSrcweir 	}
931*cdf0e10cSrcweir 
932*cdf0e10cSrcweir 	bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const
933*cdf0e10cSrcweir 	{
934*cdf0e10cSrcweir 		::std::vector< double > aAllResults;
935*cdf0e10cSrcweir 
936*cdf0e10cSrcweir 		aAllResults.reserve(4);
937*cdf0e10cSrcweir 		getAllExtremumPositions(aAllResults);
938*cdf0e10cSrcweir 
939*cdf0e10cSrcweir 		const sal_uInt32 nCount(aAllResults.size());
940*cdf0e10cSrcweir 
941*cdf0e10cSrcweir 		if(!nCount)
942*cdf0e10cSrcweir 		{
943*cdf0e10cSrcweir 			return false;
944*cdf0e10cSrcweir 		}
945*cdf0e10cSrcweir 		else if(1 == nCount)
946*cdf0e10cSrcweir 		{
947*cdf0e10cSrcweir 			rfResult = aAllResults[0];
948*cdf0e10cSrcweir 			return true;
949*cdf0e10cSrcweir 		}
950*cdf0e10cSrcweir 		else
951*cdf0e10cSrcweir 		{
952*cdf0e10cSrcweir 			rfResult = *(::std::min_element(aAllResults.begin(), aAllResults.end()));
953*cdf0e10cSrcweir 			return true;
954*cdf0e10cSrcweir 		}
955*cdf0e10cSrcweir 	}
956*cdf0e10cSrcweir 
957*cdf0e10cSrcweir 	namespace
958*cdf0e10cSrcweir 	{
959*cdf0e10cSrcweir 		inline void impCheckExtremumResult(double fCandidate, ::std::vector< double >& rResult)
960*cdf0e10cSrcweir 		{
961*cdf0e10cSrcweir             // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly
962*cdf0e10cSrcweir             // by using the equalZero test, NOT ::more or ::less which will use the
963*cdf0e10cSrcweir             // ApproxEqual() which is too exact here
964*cdf0e10cSrcweir             if(fCandidate > 0.0 && !fTools::equalZero(fCandidate))
965*cdf0e10cSrcweir             {
966*cdf0e10cSrcweir                 if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0))
967*cdf0e10cSrcweir                 {
968*cdf0e10cSrcweir     				rResult.push_back(fCandidate);
969*cdf0e10cSrcweir                 }
970*cdf0e10cSrcweir 			}
971*cdf0e10cSrcweir 		}
972*cdf0e10cSrcweir 	}
973*cdf0e10cSrcweir 
974*cdf0e10cSrcweir 	void B2DCubicBezier::getAllExtremumPositions(::std::vector< double >& rResults) const
975*cdf0e10cSrcweir 	{
976*cdf0e10cSrcweir 		rResults.clear();
977*cdf0e10cSrcweir 
978*cdf0e10cSrcweir 		// calculate the x-extrema parameters by zeroing first x-derivative
979*cdf0e10cSrcweir 		// of the cubic bezier's parametric formula, which results in a
980*cdf0e10cSrcweir 		// quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
981*cdf0e10cSrcweir 		const B2DPoint aControlDiff( maControlPointA - maControlPointB );
982*cdf0e10cSrcweir 		double fCX = maControlPointA.getX() - maStartPoint.getX();
983*cdf0e10cSrcweir 		const double fBX = fCX + aControlDiff.getX();
984*cdf0e10cSrcweir 		const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX());
985*cdf0e10cSrcweir 
986*cdf0e10cSrcweir 		if(fTools::equalZero(fCX))
987*cdf0e10cSrcweir 		{
988*cdf0e10cSrcweir 			// detect fCX equal zero and truncate to real zero value in that case
989*cdf0e10cSrcweir 			fCX = 0.0;
990*cdf0e10cSrcweir 		}
991*cdf0e10cSrcweir 
992*cdf0e10cSrcweir 		if( !fTools::equalZero(fAX) )
993*cdf0e10cSrcweir 		{
994*cdf0e10cSrcweir 			// derivative is polynomial of order 2 => use binomial formula
995*cdf0e10cSrcweir 			const double fD = fBX*fBX - fAX*fCX;
996*cdf0e10cSrcweir 			if( fD >= 0.0 )
997*cdf0e10cSrcweir 			{
998*cdf0e10cSrcweir 				const double fS = sqrt(fD);
999*cdf0e10cSrcweir 				// calculate both roots (avoiding a numerically unstable subtraction)
1000*cdf0e10cSrcweir 				const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
1001*cdf0e10cSrcweir 				impCheckExtremumResult(fQ / fAX, rResults);
1002*cdf0e10cSrcweir 				if( !fTools::equalZero(fS) ) // ignore root multiplicity
1003*cdf0e10cSrcweir 					impCheckExtremumResult(fCX / fQ, rResults);
1004*cdf0e10cSrcweir 			}
1005*cdf0e10cSrcweir 		}
1006*cdf0e10cSrcweir 		else if( !fTools::equalZero(fBX) )
1007*cdf0e10cSrcweir 		{
1008*cdf0e10cSrcweir 			// derivative is polynomial of order 1 => one extrema
1009*cdf0e10cSrcweir 			impCheckExtremumResult(fCX / (2 * fBX), rResults);
1010*cdf0e10cSrcweir 		}
1011*cdf0e10cSrcweir 
1012*cdf0e10cSrcweir 		// calculate the y-extrema parameters by zeroing first y-derivative
1013*cdf0e10cSrcweir 		double fCY = maControlPointA.getY() - maStartPoint.getY();
1014*cdf0e10cSrcweir 		const double fBY = fCY + aControlDiff.getY();
1015*cdf0e10cSrcweir 		const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY());
1016*cdf0e10cSrcweir 
1017*cdf0e10cSrcweir 		if(fTools::equalZero(fCY))
1018*cdf0e10cSrcweir 		{
1019*cdf0e10cSrcweir 			// detect fCY equal zero and truncate to real zero value in that case
1020*cdf0e10cSrcweir 			fCY = 0.0;
1021*cdf0e10cSrcweir 		}
1022*cdf0e10cSrcweir 
1023*cdf0e10cSrcweir 		if( !fTools::equalZero(fAY) )
1024*cdf0e10cSrcweir 		{
1025*cdf0e10cSrcweir 			// derivative is polynomial of order 2 => use binomial formula
1026*cdf0e10cSrcweir 			const double fD = fBY*fBY - fAY*fCY;
1027*cdf0e10cSrcweir 			if( fD >= 0.0 )
1028*cdf0e10cSrcweir 			{
1029*cdf0e10cSrcweir 				const double fS = sqrt(fD);
1030*cdf0e10cSrcweir 				// calculate both roots (avoiding a numerically unstable subtraction)
1031*cdf0e10cSrcweir 				const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
1032*cdf0e10cSrcweir 				impCheckExtremumResult(fQ / fAY, rResults);
1033*cdf0e10cSrcweir 				if( !fTools::equalZero(fS) ) // ignore root multiplicity
1034*cdf0e10cSrcweir 					impCheckExtremumResult(fCY / fQ, rResults);
1035*cdf0e10cSrcweir 			}
1036*cdf0e10cSrcweir 		}
1037*cdf0e10cSrcweir 		else if( !fTools::equalZero(fBY) )
1038*cdf0e10cSrcweir 		{
1039*cdf0e10cSrcweir 			// derivative is polynomial of order 1 => one extrema
1040*cdf0e10cSrcweir 			impCheckExtremumResult(fCY / (2 * fBY), rResults);
1041*cdf0e10cSrcweir 		}
1042*cdf0e10cSrcweir 	}
1043*cdf0e10cSrcweir 
1044*cdf0e10cSrcweir 	int B2DCubicBezier::getMaxDistancePositions( double pResult[2]) const
1045*cdf0e10cSrcweir 	{
1046*cdf0e10cSrcweir 		// the distance from the bezier to a line through start and end
1047*cdf0e10cSrcweir 		// is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t)-STARTy,-BEZIERx(t)-STARTx)
1048*cdf0e10cSrcweir 		// this distance becomes zero for at least t==0 and t==1
1049*cdf0e10cSrcweir 		// its extrema that are between 0..1 are interesting as split candidates
1050*cdf0e10cSrcweir 		// its derived function has the form dD/dt = fA*t^2 + 2*fB*t + fC
1051*cdf0e10cSrcweir 		const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
1052*cdf0e10cSrcweir 		const double fA = (3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX()) * aRelativeEndPoint.getY()
1053*cdf0e10cSrcweir 				- (3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY()) * aRelativeEndPoint.getX();
1054*cdf0e10cSrcweir 		const double fB = (maControlPointB.getX() - 2 * maControlPointA.getX() + maStartPoint.getX()) * aRelativeEndPoint.getY()
1055*cdf0e10cSrcweir 				- (maControlPointB.getY() - 2 * maControlPointA.getY() + maStartPoint.getY()) * aRelativeEndPoint.getX();
1056*cdf0e10cSrcweir 		const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY()
1057*cdf0e10cSrcweir 				- (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX();
1058*cdf0e10cSrcweir 
1059*cdf0e10cSrcweir 		// test for degenerated case: order<2
1060*cdf0e10cSrcweir 		if( fTools::equalZero(fA) )
1061*cdf0e10cSrcweir 		{
1062*cdf0e10cSrcweir 			// test for degenerated case: order==0
1063*cdf0e10cSrcweir 			if( fTools::equalZero(fB) )
1064*cdf0e10cSrcweir 				return 0;
1065*cdf0e10cSrcweir 
1066*cdf0e10cSrcweir 			// solving the order==1 polynomial is trivial
1067*cdf0e10cSrcweir 			pResult[0] = -fC / (2*fB);
1068*cdf0e10cSrcweir 
1069*cdf0e10cSrcweir 			// test root and ignore it when it is outside the curve
1070*cdf0e10cSrcweir 			int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
1071*cdf0e10cSrcweir 			return nCount;
1072*cdf0e10cSrcweir 		}
1073*cdf0e10cSrcweir 
1074*cdf0e10cSrcweir 		// derivative is polynomial of order 2
1075*cdf0e10cSrcweir 		// check if the polynomial has non-imaginary roots
1076*cdf0e10cSrcweir 		const double fD = fB*fB - fA*fC;
1077*cdf0e10cSrcweir 		if( fD >= 0.0 )	// TODO: is this test needed? geometrically not IMHO
1078*cdf0e10cSrcweir 		{
1079*cdf0e10cSrcweir 			// calculate first root (avoiding a numerically unstable subtraction)
1080*cdf0e10cSrcweir 			const double fS = sqrt(fD);
1081*cdf0e10cSrcweir 			const double fQ = -(fB + ((fB >= 0) ? +fS : -fS));
1082*cdf0e10cSrcweir 			pResult[0] = fQ / fA;
1083*cdf0e10cSrcweir 			// ignore root when it is outside the curve
1084*cdf0e10cSrcweir 			static const double fEps = 1e-9;
1085*cdf0e10cSrcweir 			int nCount = ((pResult[0] > fEps) && (pResult[0] < fEps));
1086*cdf0e10cSrcweir 
1087*cdf0e10cSrcweir 			// ignore root multiplicity
1088*cdf0e10cSrcweir 			if( !fTools::equalZero(fD) )
1089*cdf0e10cSrcweir 			{
1090*cdf0e10cSrcweir  				// calculate the other root
1091*cdf0e10cSrcweir 				const double fRoot = fC / fQ;
1092*cdf0e10cSrcweir 				// ignore root when it is outside the curve
1093*cdf0e10cSrcweir 				if( (fRoot > fEps) && (fRoot < 1.0-fEps) )
1094*cdf0e10cSrcweir 					pResult[ nCount++ ] = fRoot;
1095*cdf0e10cSrcweir 			}
1096*cdf0e10cSrcweir 
1097*cdf0e10cSrcweir 			return nCount;
1098*cdf0e10cSrcweir 		}
1099*cdf0e10cSrcweir 
1100*cdf0e10cSrcweir 		return 0;
1101*cdf0e10cSrcweir 	}
1102*cdf0e10cSrcweir 
1103*cdf0e10cSrcweir } // end of namespace basegfx
1104*cdf0e10cSrcweir 
1105*cdf0e10cSrcweir // eof
1106