xref: /trunk/main/basegfx/source/polygon/b2dpolypolygoncutter.cxx (revision 3a7cf181c55416e69e525ddc0b38c22235ec1569)
1 /**************************************************************
2  *
3  * Licensed to the Apache Software Foundation (ASF) under one
4  * or more contributor license agreements.  See the NOTICE file
5  * distributed with this work for additional information
6  * regarding copyright ownership.  The ASF licenses this file
7  * to you under the Apache License, Version 2.0 (the
8  * "License"); you may not use this file except in compliance
9  * with the License.  You may obtain a copy of the License at
10  *
11  *   http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing,
14  * software distributed under the License is distributed on an
15  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  * KIND, either express or implied.  See the License for the
17  * specific language governing permissions and limitations
18  * under the License.
19  *
20  *************************************************************/
21 
22 
23 
24 // MARKER(update_precomp.py): autogen include statement, do not remove
25 #include "precompiled_basegfx.hxx"
26 #include <osl/diagnose.h>
27 #include <basegfx/numeric/ftools.hxx>
28 #include <basegfx/polygon/b2dpolypolygoncutter.hxx>
29 #include <basegfx/point/b2dpoint.hxx>
30 #include <basegfx/vector/b2dvector.hxx>
31 #include <basegfx/polygon/b2dpolygon.hxx>
32 #include <basegfx/polygon/b2dpolygontools.hxx>
33 #include <basegfx/polygon/b2dpolygoncutandtouch.hxx>
34 #include <basegfx/range/b2drange.hxx>
35 #include <basegfx/polygon/b2dpolypolygontools.hxx>
36 #include <basegfx/curve/b2dcubicbezier.hxx>
37 #include <vector>
38 #include <algorithm>
39 
40 //////////////////////////////////////////////////////////////////////////////
41 
42 namespace basegfx
43 {
44     namespace
45     {
46         //////////////////////////////////////////////////////////////////////////////
47 
48         struct StripHelper
49         {
50             B2DRange                                maRange;
51             sal_Int32                               mnDepth;
52             B2VectorOrientation                     meOrinetation;
53         };
54 
55         //////////////////////////////////////////////////////////////////////////////
56 
57         struct PN
58         {
59         public:
60             B2DPoint                maPoint;
61             sal_uInt32              mnI;
62             sal_uInt32              mnIP;
63             sal_uInt32              mnIN;
64         };
65 
66         //////////////////////////////////////////////////////////////////////////////
67 
68         struct VN
69         {
70         public:
71             B2DVector               maPrev;
72             B2DVector               maNext;
73 
74             // to have the correct curve segments in the crossover checks,
75             // it is necessary to keep the original next vectors, too. Else,
76             // it may happen to use a already switched next vector which
77             // would interpolate the wrong comparison point
78             B2DVector               maOriginalNext;
79         };
80 
81         //////////////////////////////////////////////////////////////////////////////
82 
83         struct SN
84         {
85         public:
86             PN*                     mpPN;
87 
88             bool operator<(const SN& rComp) const
89             {
90                 if(fTools::equal(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX()))
91                 {
92                     if(fTools::equal(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY()))
93                     {
94                         return (mpPN->mnI < rComp.mpPN->mnI);
95                     }
96                     else
97                     {
98                         return fTools::less(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY());
99                     }
100                 }
101                 else
102                 {
103                     return fTools::less(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX());
104                 }
105             }
106         };
107 
108         //////////////////////////////////////////////////////////////////////////////
109 
110         typedef ::std::vector< PN > PNV;
111         typedef ::std::vector< VN > VNV;
112         typedef ::std::vector< SN > SNV;
113 
114         //////////////////////////////////////////////////////////////////////////////
115 
116         class solver
117         {
118         private:
119             const B2DPolyPolygon    maOriginal;
120             PNV                     maPNV;
121             VNV                     maVNV;
122             SNV                     maSNV;
123 
124             unsigned                mbIsCurve : 1;
125             unsigned                mbChanged : 1;
126 
127             void impAddPolygon(const sal_uInt32 aPos, const B2DPolygon& rGeometry)
128             {
129                 const sal_uInt32 nCount(rGeometry.count());
130                 PN aNewPN;
131                 VN aNewVN;
132                 SN aNewSN;
133 
134                 for(sal_uInt32 a(0); a < nCount; a++)
135                 {
136                     const B2DPoint aPoint(rGeometry.getB2DPoint(a));
137                     aNewPN.maPoint = aPoint;
138                     aNewPN.mnI = aPos + a;
139                     aNewPN.mnIP = aPos + ((a != 0) ? a - 1 : nCount - 1);
140                     aNewPN.mnIN = aPos + ((a + 1 == nCount) ? 0 : a + 1);
141                     maPNV.push_back(aNewPN);
142 
143                     if(mbIsCurve)
144                     {
145                         aNewVN.maPrev = rGeometry.getPrevControlPoint(a) - aPoint;
146                         aNewVN.maNext = rGeometry.getNextControlPoint(a) - aPoint;
147                         aNewVN.maOriginalNext = aNewVN.maNext;
148                         maVNV.push_back(aNewVN);
149                     }
150 
151                     aNewSN.mpPN = &maPNV[maPNV.size() - 1];
152                     maSNV.push_back(aNewSN);
153                 }
154             }
155 
156             bool impLeftOfEdges(const B2DVector& rVecA, const B2DVector& rVecB, const B2DVector& rTest)
157             {
158                 // tests if rTest is left of both directed line segments along the line -rVecA, rVecB. Test is
159                 // with border.
160                 if(rVecA.cross(rVecB) > 0.0)
161                 {
162                     // b is left turn seen from a, test if Test is left of both and so inside (left is seeen as inside)
163                     const bool bBoolA(fTools::moreOrEqual(rVecA.cross(rTest), 0.0));
164                     const bool bBoolB(fTools::lessOrEqual(rVecB.cross(rTest), 0.0));
165 
166                     return (bBoolA && bBoolB);
167                 }
168                 else
169                 {
170                     // b is right turn seen from a, test if Test is right of both and so outside (left is seeen as inside)
171                     const bool bBoolA(fTools::lessOrEqual(rVecA.cross(rTest), 0.0));
172                     const bool bBoolB(fTools::moreOrEqual(rVecB.cross(rTest), 0.0));
173 
174                     return (!(bBoolA && bBoolB));
175                 }
176             }
177 
178             void impSwitchNext(PN& rPNa, PN& rPNb)
179             {
180                 ::std::swap(rPNa.mnIN, rPNb.mnIN);
181 
182                 if(mbIsCurve)
183                 {
184                     VN& rVNa = maVNV[rPNa.mnI];
185                     VN& rVNb = maVNV[rPNb.mnI];
186 
187                     ::std::swap(rVNa.maNext, rVNb.maNext);
188                 }
189 
190                 if(!mbChanged)
191                 {
192                     mbChanged = true;
193                 }
194             }
195 
196             B2DCubicBezier createSegment(const PN& rPN, bool bPrev) const
197             {
198                 const B2DPoint& rStart(rPN.maPoint);
199                 const B2DPoint& rEnd(maPNV[bPrev ? rPN.mnIP : rPN.mnIN].maPoint);
200                 const B2DVector& rCPA(bPrev ? maVNV[rPN.mnI].maPrev : maVNV[rPN.mnI].maNext);
201                 // Use maOriginalNext, not maNext to create the original (yet unchanged)
202                 // curve segment. Otherwise, this segment would NOT ne correct.
203                 const B2DVector& rCPB(bPrev ? maVNV[maPNV[rPN.mnIP].mnI].maOriginalNext : maVNV[maPNV[rPN.mnIN].mnI].maPrev);
204 
205                 return B2DCubicBezier(rStart, rStart + rCPA, rEnd + rCPB, rEnd);
206             }
207 
208             void impHandleCommon(PN& rPNa, PN& rPNb)
209             {
210                 if(mbIsCurve)
211                 {
212                     const B2DCubicBezier aNextA(createSegment(rPNa, false));
213                     const B2DCubicBezier aPrevA(createSegment(rPNa, true));
214 
215                     if(aNextA.equal(aPrevA))
216                     {
217                         // deadend on A (identical edge)
218                         return;
219                     }
220 
221                     const B2DCubicBezier aNextB(createSegment(rPNb, false));
222                     const B2DCubicBezier aPrevB(createSegment(rPNb, true));
223 
224                     if(aNextB.equal(aPrevB))
225                     {
226                         // deadend on B (identical edge)
227                         return;
228                     }
229 
230                     if(aPrevA.equal(aPrevB))
231                     {
232                         // common edge in same direction
233                         if(aNextA.equal(aNextB))
234                         {
235                             // common edge in same direction continues
236                             return;
237                         }
238                         else
239                         {
240                             // common edge in same direction leave
241                             // action is done on enter
242                             return;
243                         }
244                     }
245                     else if(aPrevA.equal(aNextB))
246                     {
247                         // common edge in opposite direction
248                         if(aNextA.equal(aPrevB))
249                         {
250                             // common edge in opposite direction continues
251                             return;
252                         }
253                         else
254                         {
255                             // common edge in opposite direction leave
256                             impSwitchNext(rPNa, rPNb);
257                         }
258                     }
259                     else if(aNextA.equal(aNextB))
260                     {
261                         // common edge in same direction enter
262                         // search leave edge
263                         PN* pPNa2 = &maPNV[rPNa.mnIN];
264                         PN* pPNb2 = &maPNV[rPNb.mnIN];
265                         bool bOnEdge(true);
266 
267                         do
268                         {
269                             const B2DCubicBezier aNextA2(createSegment(*pPNa2, false));
270                             const B2DCubicBezier aNextB2(createSegment(*pPNb2, false));
271 
272                             if(aNextA2.equal(aNextB2))
273                             {
274                                 pPNa2 = &maPNV[pPNa2->mnIN];
275                                 pPNb2 = &maPNV[pPNb2->mnIN];
276                             }
277                             else
278                             {
279                                 bOnEdge = false;
280                             }
281                         }
282                         while(bOnEdge && pPNa2 != &rPNa && pPNa2 != &rPNa);
283 
284                         if(bOnEdge)
285                         {
286                             // loop over two identical polygon paths
287                             return;
288                         }
289                         else
290                         {
291                             // enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges
292                             // at enter/leave. Check for crossover.
293                             const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint());
294                             const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint());
295                             const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint());
296                             const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB));
297 
298                             const B2DCubicBezier aNextA2(createSegment(*pPNa2, false));
299                             const B2DCubicBezier aPrevA2(createSegment(*pPNa2, true));
300                             const B2DCubicBezier aNextB2(createSegment(*pPNb2, false));
301                             const B2DVector aPrevCA2(aPrevA2.interpolatePoint(0.5) - aPrevA2.getStartPoint());
302                             const B2DVector aNextCA2(aNextA2.interpolatePoint(0.5) - aNextA2.getStartPoint());
303                             const B2DVector aNextCB2(aNextB2.interpolatePoint(0.5) - aNextB2.getStartPoint());
304                             const bool bLeave(impLeftOfEdges(aPrevCA2, aNextCA2, aNextCB2));
305 
306                             if(bEnter != bLeave)
307                             {
308                                 // crossover
309                                 impSwitchNext(rPNa, rPNb);
310                             }
311                         }
312                     }
313                     else if(aNextA.equal(aPrevB))
314                     {
315                         // common edge in opposite direction enter
316                         impSwitchNext(rPNa, rPNb);
317                     }
318                     else
319                     {
320                         // no common edges, check for crossover
321                         const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint());
322                         const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint());
323                         const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint());
324                         const B2DVector aNextCB(aNextB.interpolatePoint(0.5) - aNextB.getStartPoint());
325 
326                         const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB));
327                         const bool bLeave(impLeftOfEdges(aPrevCA, aNextCA, aNextCB));
328 
329                         if(bEnter != bLeave)
330                         {
331                             // crossover
332                             impSwitchNext(rPNa, rPNb);
333                         }
334                     }
335                 }
336                 else
337                 {
338                     const B2DPoint& rNextA(maPNV[rPNa.mnIN].maPoint);
339                     const B2DPoint& rPrevA(maPNV[rPNa.mnIP].maPoint);
340 
341                     if(rNextA.equal(rPrevA))
342                     {
343                         // deadend on A
344                         return;
345                     }
346 
347                     const B2DPoint& rNextB(maPNV[rPNb.mnIN].maPoint);
348                     const B2DPoint& rPrevB(maPNV[rPNb.mnIP].maPoint);
349 
350                     if(rNextB.equal(rPrevB))
351                     {
352                         // deadend on B
353                         return;
354                     }
355 
356                     if(rPrevA.equal(rPrevB))
357                     {
358                         // common edge in same direction
359                         if(rNextA.equal(rNextB))
360                         {
361                             // common edge in same direction continues
362                             return;
363                         }
364                         else
365                         {
366                             // common edge in same direction leave
367                             // action is done on enter
368                             return;
369                         }
370                     }
371                     else if(rPrevA.equal(rNextB))
372                     {
373                         // common edge in opposite direction
374                         if(rNextA.equal(rPrevB))
375                         {
376                             // common edge in opposite direction continues
377                             return;
378                         }
379                         else
380                         {
381                             // common edge in opposite direction leave
382                             impSwitchNext(rPNa, rPNb);
383                         }
384                     }
385                     else if(rNextA.equal(rNextB))
386                     {
387                         // common edge in same direction enter
388                         // search leave edge
389                         PN* pPNa2 = &maPNV[rPNa.mnIN];
390                         PN* pPNb2 = &maPNV[rPNb.mnIN];
391                         bool bOnEdge(true);
392 
393                         do
394                         {
395                             const B2DPoint& rNextA2(maPNV[pPNa2->mnIN].maPoint);
396                             const B2DPoint& rNextB2(maPNV[pPNb2->mnIN].maPoint);
397 
398                             if(rNextA2.equal(rNextB2))
399                             {
400                                 pPNa2 = &maPNV[pPNa2->mnIN];
401                                 pPNb2 = &maPNV[pPNb2->mnIN];
402                             }
403                             else
404                             {
405                                 bOnEdge = false;
406                             }
407                         }
408                         while(bOnEdge && pPNa2 != &rPNa && pPNa2 != &rPNa);
409 
410                         if(bOnEdge)
411                         {
412                             // loop over two identical polygon paths
413                             return;
414                         }
415                         else
416                         {
417                             // enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges
418                             // at enter/leave. Check for crossover.
419                             const B2DPoint& aPointE(rPNa.maPoint);
420                             const B2DVector aPrevAE(rPrevA - aPointE);
421                             const B2DVector aNextAE(rNextA - aPointE);
422                             const B2DVector aPrevBE(rPrevB - aPointE);
423 
424                             const B2DPoint& aPointL(pPNa2->maPoint);
425                             const B2DVector aPrevAL(maPNV[pPNa2->mnIP].maPoint - aPointL);
426                             const B2DVector aNextAL(maPNV[pPNa2->mnIN].maPoint - aPointL);
427                             const B2DVector aNextBL(maPNV[pPNb2->mnIN].maPoint - aPointL);
428 
429                             const bool bEnter(impLeftOfEdges(aPrevAE, aNextAE, aPrevBE));
430                             const bool bLeave(impLeftOfEdges(aPrevAL, aNextAL, aNextBL));
431 
432                             if(bEnter != bLeave)
433                             {
434                                 // crossover; switch start or end
435                                 impSwitchNext(rPNa, rPNb);
436                             }
437                         }
438                     }
439                     else if(rNextA.equal(rPrevB))
440                     {
441                         // common edge in opposite direction enter
442                         impSwitchNext(rPNa, rPNb);
443                     }
444                     else
445                     {
446                         // no common edges, check for crossover
447                         const B2DPoint& aPoint(rPNa.maPoint);
448                         const B2DVector aPrevA(rPrevA - aPoint);
449                         const B2DVector aNextA(rNextA - aPoint);
450                         const B2DVector aPrevB(rPrevB - aPoint);
451                         const B2DVector aNextB(rNextB - aPoint);
452 
453                         const bool bEnter(impLeftOfEdges(aPrevA, aNextA, aPrevB));
454                         const bool bLeave(impLeftOfEdges(aPrevA, aNextA, aNextB));
455 
456                         if(bEnter != bLeave)
457                         {
458                             // crossover
459                             impSwitchNext(rPNa, rPNb);
460                         }
461                     }
462                 }
463             }
464 
465             void impSolve()
466             {
467                 // sort by point to identify common nodes
468                 ::std::sort(maSNV.begin(), maSNV.end());
469 
470                 // handle common nodes
471                 const sal_uInt32 nNodeCount(maSNV.size());
472 
473                 for(sal_uInt32 a(0); a < nNodeCount - 1; a++)
474                 {
475                     // test a before using it, not after. Also use nPointCount instead of aSortNodes.size()
476                     PN& rPNb = *(maSNV[a].mpPN);
477 
478                     for(sal_uInt32 b(a + 1); b < nNodeCount && rPNb.maPoint.equal(maSNV[b].mpPN->maPoint); b++)
479                     {
480                         impHandleCommon(rPNb, *maSNV[b].mpPN);
481                     }
482                 }
483             }
484 
485         public:
486             solver(const B2DPolygon& rOriginal)
487             :   maOriginal(B2DPolyPolygon(rOriginal)),
488                 mbIsCurve(false),
489                 mbChanged(false)
490             {
491                 const sal_uInt32 nOriginalCount(rOriginal.count());
492 
493                 if(nOriginalCount)
494                 {
495                     B2DPolygon aGeometry(tools::addPointsAtCutsAndTouches(rOriginal));
496                     aGeometry.removeDoublePoints();
497                     aGeometry = tools::simplifyCurveSegments(aGeometry);
498                     mbIsCurve = aGeometry.areControlPointsUsed();
499 
500                     const sal_uInt32 nPointCount(aGeometry.count());
501 
502                     // If it's not a pezier polygon, at least four points are needed to create
503                     // a self-intersection. If it's a bezier polygon, the minimum point number
504                     // is two, since with a single point You get a curve, but no self-intersection
505                     if(nPointCount > 3 || (nPointCount > 1 && mbIsCurve))
506                     {
507                         // reserve space in point, control and sort vector.
508                         maSNV.reserve(nPointCount);
509                         maPNV.reserve(nPointCount);
510                         maVNV.reserve(mbIsCurve ? nPointCount : 0);
511 
512                         // fill data
513                         impAddPolygon(0, aGeometry);
514 
515                         // solve common nodes
516                         impSolve();
517                     }
518                 }
519             }
520 
521             solver(const B2DPolyPolygon& rOriginal)
522             :   maOriginal(rOriginal),
523                 mbIsCurve(false),
524                 mbChanged(false)
525             {
526                 sal_uInt32 nOriginalCount(maOriginal.count());
527 
528                 if(nOriginalCount)
529                 {
530                     B2DPolyPolygon aGeometry(tools::addPointsAtCutsAndTouches(maOriginal, true));
531                     aGeometry.removeDoublePoints();
532                     aGeometry = tools::simplifyCurveSegments(aGeometry);
533                     mbIsCurve = aGeometry.areControlPointsUsed();
534                     nOriginalCount = aGeometry.count();
535 
536                     if(nOriginalCount)
537                     {
538                         sal_uInt32 nPointCount(0);
539                         sal_uInt32 a(0);
540 
541                         // count points
542                         for(a = 0; a < nOriginalCount; a++)
543                         {
544                             const B2DPolygon aCandidate(aGeometry.getB2DPolygon(a));
545                             const sal_uInt32 nCandCount(aCandidate.count());
546 
547                             // If it's not a bezier curve, at least three points would be needed to have a
548                             // topological relevant (not empty) polygon. Since its not known here if trivial
549                             // edges (dead ends) will be kept or sorted out, add non-bezier polygons with
550                             // more than one point.
551                             // For bezier curves, the minimum for defining an area is also one.
552                             if(nCandCount)
553                             {
554                                 nPointCount += nCandCount;
555                             }
556                         }
557 
558                         if(nPointCount)
559                         {
560                             // reserve space in point, control and sort vector.
561                             maSNV.reserve(nPointCount);
562                             maPNV.reserve(nPointCount);
563                             maVNV.reserve(mbIsCurve ? nPointCount : 0);
564 
565                             // fill data
566                             sal_uInt32 nInsertIndex(0);
567 
568                             for(a = 0; a < nOriginalCount; a++)
569                             {
570                                 const B2DPolygon aCandidate(aGeometry.getB2DPolygon(a));
571                                 const sal_uInt32 nCandCount(aCandidate.count());
572 
573                                 // use same condition as above, the data vector is
574                                 // pre-allocated
575                                 if(nCandCount)
576                                 {
577                                     impAddPolygon(nInsertIndex, aCandidate);
578                                     nInsertIndex += nCandCount;
579                                 }
580                             }
581 
582                             // solve common nodes
583                             impSolve();
584                         }
585                     }
586                 }
587             }
588 
589             B2DPolyPolygon getB2DPolyPolygon()
590             {
591                 if(mbChanged)
592                 {
593                     B2DPolyPolygon aRetval;
594                     const sal_uInt32 nCount(maPNV.size());
595                     sal_uInt32 nCountdown(nCount);
596 
597                     for(sal_uInt32 a(0); nCountdown && a < nCount; a++)
598                     {
599                         PN& rPN = maPNV[a];
600 
601                         if(SAL_MAX_UINT32 != rPN.mnI)
602                         {
603                             // unused node, start new part polygon
604                             B2DPolygon aNewPart;
605                             PN* pPNCurr = &rPN;
606 
607                             do
608                             {
609                                 const B2DPoint& rPoint = pPNCurr->maPoint;
610                                 aNewPart.append(rPoint);
611 
612                                 if(mbIsCurve)
613                                 {
614                                     const VN& rVNCurr = maVNV[pPNCurr->mnI];
615 
616                                     if(!rVNCurr.maPrev.equalZero())
617                                     {
618                                         aNewPart.setPrevControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maPrev);
619                                     }
620 
621                                     if(!rVNCurr.maNext.equalZero())
622                                     {
623                                         aNewPart.setNextControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maNext);
624                                     }
625                                 }
626 
627                                 pPNCurr->mnI = SAL_MAX_UINT32;
628                                 nCountdown--;
629                                 pPNCurr = &(maPNV[pPNCurr->mnIN]);
630                             }
631                             while(pPNCurr != &rPN && SAL_MAX_UINT32 != pPNCurr->mnI);
632 
633                             // close and add
634                             aNewPart.setClosed(true);
635                             aRetval.append(aNewPart);
636                         }
637                     }
638 
639                     return aRetval;
640                 }
641                 else
642                 {
643                     // no change, return original
644                     return maOriginal;
645                 }
646             }
647         };
648 
649         //////////////////////////////////////////////////////////////////////////////
650 
651     } // end of anonymous namespace
652 } // end of namespace basegfx
653 
654 //////////////////////////////////////////////////////////////////////////////
655 
656 namespace basegfx
657 {
658     namespace tools
659     {
660         //////////////////////////////////////////////////////////////////////////////
661 
662         B2DPolyPolygon solveCrossovers(const B2DPolyPolygon& rCandidate)
663         {
664             if(rCandidate.count() > 1L)
665             {
666                 solver aSolver(rCandidate);
667                 return aSolver.getB2DPolyPolygon();
668             }
669             else
670             {
671                 return rCandidate;
672             }
673         }
674 
675         //////////////////////////////////////////////////////////////////////////////
676 
677         B2DPolyPolygon solveCrossovers(const B2DPolygon& rCandidate)
678         {
679             solver aSolver(rCandidate);
680             return aSolver.getB2DPolyPolygon();
681         }
682 
683         //////////////////////////////////////////////////////////////////////////////
684 
685         B2DPolyPolygon stripNeutralPolygons(const B2DPolyPolygon& rCandidate)
686         {
687             B2DPolyPolygon aRetval;
688 
689             for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
690             {
691                 const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
692 
693                 if(ORIENTATION_NEUTRAL != tools::getOrientation(aCandidate))
694                 {
695                     aRetval.append(aCandidate);
696                 }
697             }
698 
699             return aRetval;
700         }
701 
702         //////////////////////////////////////////////////////////////////////////////
703 
704         B2DPolyPolygon stripDispensablePolygons(const B2DPolyPolygon& rCandidate, bool bKeepAboveZero)
705         {
706             const sal_uInt32 nCount(rCandidate.count());
707             B2DPolyPolygon aRetval;
708 
709             if(nCount)
710             {
711                 if(nCount == 1L)
712                 {
713                     if(!bKeepAboveZero && ORIENTATION_POSITIVE == tools::getOrientation(rCandidate.getB2DPolygon(0L)))
714                     {
715                         aRetval = rCandidate;
716                     }
717                 }
718                 else
719                 {
720                     sal_uInt32 a, b;
721                     ::std::vector< StripHelper > aHelpers;
722                     aHelpers.resize(nCount);
723 
724                     for(a = 0L; a < nCount; a++)
725                     {
726                         const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
727                         StripHelper* pNewHelper = &(aHelpers[a]);
728                         pNewHelper->maRange = tools::getRange(aCandidate);
729                         pNewHelper->meOrinetation = tools::getOrientation(aCandidate);
730                         pNewHelper->mnDepth = (ORIENTATION_NEGATIVE == pNewHelper->meOrinetation ? -1L : 0L);
731                     }
732 
733                     for(a = 0L; a < nCount - 1L; a++)
734                     {
735                         const B2DPolygon aCandA(rCandidate.getB2DPolygon(a));
736                         StripHelper& rHelperA = aHelpers[a];
737 
738                         for(b = a + 1L; b < nCount; b++)
739                         {
740                             const B2DPolygon aCandB(rCandidate.getB2DPolygon(b));
741                             StripHelper& rHelperB = aHelpers[b];
742                             const bool bAInB(rHelperB.maRange.isInside(rHelperA.maRange) && tools::isInside(aCandB, aCandA, true));
743                             const bool bBInA(rHelperA.maRange.isInside(rHelperB.maRange) && tools::isInside(aCandA, aCandB, true));
744 
745                             if(bAInB && bBInA)
746                             {
747                                 // congruent
748                                 if(rHelperA.meOrinetation == rHelperB.meOrinetation)
749                                 {
750                                     // two polys or two holes. Lower one of them to get one of them out of the way.
751                                     // Since each will be contained in the other one, both will be increased, too.
752                                     // So, for lowering, increase only one of them
753                                     rHelperA.mnDepth++;
754                                 }
755                                 else
756                                 {
757                                     // poly and hole. They neutralize, so get rid of both. Move securely below zero.
758                                     rHelperA.mnDepth = -((sal_Int32)nCount);
759                                     rHelperB.mnDepth = -((sal_Int32)nCount);
760                                 }
761                             }
762                             else
763                             {
764                                 if(bAInB)
765                                 {
766                                     if(ORIENTATION_NEGATIVE == rHelperB.meOrinetation)
767                                     {
768                                         rHelperA.mnDepth--;
769                                     }
770                                     else
771                                     {
772                                         rHelperA.mnDepth++;
773                                     }
774                                 }
775                                 else if(bBInA)
776                                 {
777                                     if(ORIENTATION_NEGATIVE == rHelperA.meOrinetation)
778                                     {
779                                         rHelperB.mnDepth--;
780                                     }
781                                     else
782                                     {
783                                         rHelperB.mnDepth++;
784                                     }
785                                 }
786                             }
787                         }
788                     }
789 
790                     for(a = 0L; a < nCount; a++)
791                     {
792                         const StripHelper& rHelper = aHelpers[a];
793                         bool bAcceptEntry(bKeepAboveZero ? 1L <= rHelper.mnDepth : 0L == rHelper.mnDepth);
794 
795                         if(bAcceptEntry)
796                         {
797                             aRetval.append(rCandidate.getB2DPolygon(a));
798                         }
799                     }
800                 }
801             }
802 
803             return aRetval;
804         }
805 
806         //////////////////////////////////////////////////////////////////////////////
807 
808         B2DPolyPolygon prepareForPolygonOperation(const B2DPolygon& rCandidate)
809         {
810             solver aSolver(rCandidate);
811             B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon()));
812 
813             return correctOrientations(aRetval);
814         }
815 
816         B2DPolyPolygon prepareForPolygonOperation(const B2DPolyPolygon& rCandidate)
817         {
818             solver aSolver(rCandidate);
819             B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon()));
820 
821             return correctOrientations(aRetval);
822         }
823 
824         B2DPolyPolygon solvePolygonOperationOr(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
825         {
826             if(!rCandidateA.count())
827             {
828                 return rCandidateB;
829             }
830             else if(!rCandidateB.count())
831             {
832                 return rCandidateA;
833             }
834             else
835             {
836                 // concatenate polygons, solve crossovers and throw away all sub-polygons
837                 // which have a depth other than 0.
838                 B2DPolyPolygon aRetval(rCandidateA);
839 
840                 aRetval.append(rCandidateB);
841                 aRetval = solveCrossovers(aRetval);
842                 aRetval = stripNeutralPolygons(aRetval);
843 
844                 return stripDispensablePolygons(aRetval, false);
845             }
846         }
847 
848         B2DPolyPolygon solvePolygonOperationXor(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
849         {
850             if(!rCandidateA.count())
851             {
852                 return rCandidateB;
853             }
854             else if(!rCandidateB.count())
855             {
856                 return rCandidateA;
857             }
858             else
859             {
860                 // XOR is pretty simple: By definition it is the simple concatenation of
861                 // the single polygons since we imply XOR fill rule. Make it intersection-free
862                 // and correct orientations
863                 B2DPolyPolygon aRetval(rCandidateA);
864 
865                 aRetval.append(rCandidateB);
866                 aRetval = solveCrossovers(aRetval);
867                 aRetval = stripNeutralPolygons(aRetval);
868 
869                 return correctOrientations(aRetval);
870             }
871         }
872 
873         B2DPolyPolygon solvePolygonOperationAnd(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
874         {
875             if(!rCandidateA.count())
876             {
877                 return B2DPolyPolygon();
878             }
879             else if(!rCandidateB.count())
880             {
881                 return B2DPolyPolygon();
882             }
883             else
884             {
885                 // concatenate polygons, solve crossovers and throw away all sub-polygons
886                 // with a depth of < 1. This means to keep all polygons where at least two
887                 // polygons do overlap.
888                 B2DPolyPolygon aRetval(rCandidateA);
889 
890                 aRetval.append(rCandidateB);
891                 aRetval = solveCrossovers(aRetval);
892                 aRetval = stripNeutralPolygons(aRetval);
893 
894                 return stripDispensablePolygons(aRetval, true);
895             }
896         }
897 
898         B2DPolyPolygon solvePolygonOperationDiff(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
899         {
900             if(!rCandidateA.count())
901             {
902                 return B2DPolyPolygon();
903             }
904             else if(!rCandidateB.count())
905             {
906                 return rCandidateA;
907             }
908             else
909             {
910                 // Make B topologically to holes and append to A
911                 B2DPolyPolygon aRetval(rCandidateB);
912 
913                 aRetval.flip();
914                 aRetval.append(rCandidateA);
915 
916                 // solve crossovers and throw away all sub-polygons which have a
917                 // depth other than 0.
918                 aRetval = basegfx::tools::solveCrossovers(aRetval);
919                 aRetval = basegfx::tools::stripNeutralPolygons(aRetval);
920 
921                 return basegfx::tools::stripDispensablePolygons(aRetval, false);
922             }
923         }
924 
925         B2DPolyPolygon mergeToSinglePolyPolygon(const std::vector< basegfx::B2DPolyPolygon >& rInput)
926         {
927             std::vector< basegfx::B2DPolyPolygon > aInput(rInput);
928 
929             // first step: prepareForPolygonOperation and simple merge of non-overlapping
930             // PolyPolygons for speedup; this is possible for the wanted OR-operation
931             if(aInput.size())
932             {
933                 std::vector< basegfx::B2DPolyPolygon > aResult;
934                 aResult.reserve(aInput.size());
935 
936                 for(sal_uInt32 a(0); a < aInput.size(); a++)
937                 {
938                     const basegfx::B2DPolyPolygon aCandidate(prepareForPolygonOperation(aInput[a]));
939 
940                     if(aResult.size())
941                     {
942                         const B2DRange aCandidateRange(aCandidate.getB2DRange());
943                         bool bCouldMergeSimple(false);
944 
945                         for(sal_uInt32 b(0); !bCouldMergeSimple && b < aResult.size(); b++)
946                         {
947                             basegfx::B2DPolyPolygon aTarget(aResult[b]);
948                             const B2DRange aTargetRange(aTarget.getB2DRange());
949 
950                             if(!aCandidateRange.overlaps(aTargetRange))
951                             {
952                                 aTarget.append(aCandidate);
953                                 aResult[b] = aTarget;
954                                 bCouldMergeSimple = true;
955                             }
956                         }
957 
958                         if(!bCouldMergeSimple)
959                         {
960                             aResult.push_back(aCandidate);
961                         }
962                     }
963                     else
964                     {
965                         aResult.push_back(aCandidate);
966                     }
967                 }
968 
969                 aInput = aResult;
970             }
971 
972             // second step: melt pairwise to a single PolyPolygon
973             while(aInput.size() > 1)
974             {
975                 std::vector< basegfx::B2DPolyPolygon > aResult;
976                 aResult.reserve((aInput.size() / 2) + 1);
977 
978                 for(sal_uInt32 a(0); a < aInput.size(); a += 2)
979                 {
980                     if(a + 1 < aInput.size())
981                     {
982                         // a pair for processing
983                         aResult.push_back(solvePolygonOperationOr(aInput[a], aInput[a + 1]));
984                     }
985                     else
986                     {
987                         // last single PolyPolygon; copy to target to not lose it
988                         aResult.push_back(aInput[a]);
989                     }
990                 }
991 
992                 aInput = aResult;
993             }
994 
995             // third step: get result
996             if(1 == aInput.size())
997             {
998                 return aInput[0];
999             }
1000 
1001             return B2DPolyPolygon();
1002         }
1003 
1004         //////////////////////////////////////////////////////////////////////////////
1005 
1006     } // end of namespace tools
1007 } // end of namespace basegfx
1008 
1009 //////////////////////////////////////////////////////////////////////////////
1010 // eof
1011