xref: /trunk/main/basegfx/source/workbench/gauss.hxx (revision 914d351e5f5b84e4342a86d6ab8d4aca7308b9bd)
1ce9c7ef7SAndrew Rist /**************************************************************
2cdf0e10cSrcweir  *
3ce9c7ef7SAndrew Rist  * Licensed to the Apache Software Foundation (ASF) under one
4ce9c7ef7SAndrew Rist  * or more contributor license agreements.  See the NOTICE file
5ce9c7ef7SAndrew Rist  * distributed with this work for additional information
6ce9c7ef7SAndrew Rist  * regarding copyright ownership.  The ASF licenses this file
7ce9c7ef7SAndrew Rist  * to you under the Apache License, Version 2.0 (the
8ce9c7ef7SAndrew Rist  * "License"); you may not use this file except in compliance
9ce9c7ef7SAndrew Rist  * with the License.  You may obtain a copy of the License at
10cdf0e10cSrcweir  *
11ce9c7ef7SAndrew Rist  *   http://www.apache.org/licenses/LICENSE-2.0
12cdf0e10cSrcweir  *
13ce9c7ef7SAndrew Rist  * Unless required by applicable law or agreed to in writing,
14ce9c7ef7SAndrew Rist  * software distributed under the License is distributed on an
15ce9c7ef7SAndrew Rist  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16ce9c7ef7SAndrew Rist  * KIND, either express or implied.  See the License for the
17ce9c7ef7SAndrew Rist  * specific language governing permissions and limitations
18ce9c7ef7SAndrew Rist  * under the License.
19cdf0e10cSrcweir  *
20ce9c7ef7SAndrew Rist  *************************************************************/
21ce9c7ef7SAndrew Rist 
22ce9c7ef7SAndrew Rist 
23cdf0e10cSrcweir 
24cdf0e10cSrcweir /** This method eliminates elements below main diagonal in the given
25cdf0e10cSrcweir     matrix by gaussian elimination.
26cdf0e10cSrcweir 
27cdf0e10cSrcweir     @param matrix
28cdf0e10cSrcweir     The matrix to operate on. Last column is the result vector (right
29cdf0e10cSrcweir     hand side of the linear equation). After successful termination,
30cdf0e10cSrcweir     the matrix is upper triangular. The matrix is expected to be in
31cdf0e10cSrcweir     row major order.
32cdf0e10cSrcweir 
33cdf0e10cSrcweir     @param rows
34cdf0e10cSrcweir     Number of rows in matrix
35cdf0e10cSrcweir 
36cdf0e10cSrcweir     @param cols
37cdf0e10cSrcweir     Number of columns in matrix
38cdf0e10cSrcweir 
39cdf0e10cSrcweir     @param minPivot
40cdf0e10cSrcweir     If the pivot element gets lesser than minPivot, this method fails,
41cdf0e10cSrcweir     otherwise, elimination succeeds and true is returned.
42cdf0e10cSrcweir 
43cdf0e10cSrcweir     @return true, if elimination succeeded.
44cdf0e10cSrcweir  */
45cdf0e10cSrcweir template <class Matrix, typename BaseType>
eliminate(Matrix & matrix,int rows,int cols,const BaseType & minPivot)46cdf0e10cSrcweir bool eliminate(     Matrix&         matrix,
47cdf0e10cSrcweir                     int             rows,
48cdf0e10cSrcweir                     int             cols,
49cdf0e10cSrcweir                     const BaseType& minPivot    )
50cdf0e10cSrcweir {
51cdf0e10cSrcweir     BaseType    temp;
52cdf0e10cSrcweir     int         max, i, j, k;   /* *must* be signed, when looping like: j>=0 ! */
53cdf0e10cSrcweir 
54cdf0e10cSrcweir     /* eliminate below main diagonal */
55cdf0e10cSrcweir     for(i=0; i<cols-1; ++i)
56cdf0e10cSrcweir     {
57cdf0e10cSrcweir         /* find best pivot */
58cdf0e10cSrcweir         max = i;
59cdf0e10cSrcweir         for(j=i+1; j<rows; ++j)
60cdf0e10cSrcweir             if( fabs(matrix[ j*cols + i ]) > fabs(matrix[ max*cols + i ]) )
61cdf0e10cSrcweir                 max = j;
62cdf0e10cSrcweir 
63cdf0e10cSrcweir         /* check pivot value */
64cdf0e10cSrcweir         if( fabs(matrix[ max*cols + i ]) < minPivot )
65cdf0e10cSrcweir             return false;   /* pivot too small! */
66cdf0e10cSrcweir 
67cdf0e10cSrcweir         /* interchange rows 'max' and 'i' */
68cdf0e10cSrcweir         for(k=0; k<cols; ++k)
69cdf0e10cSrcweir         {
70cdf0e10cSrcweir             temp = matrix[ i*cols + k ];
71cdf0e10cSrcweir             matrix[ i*cols + k ] = matrix[ max*cols + k ];
72cdf0e10cSrcweir             matrix[ max*cols + k ] = temp;
73cdf0e10cSrcweir         }
74cdf0e10cSrcweir 
75cdf0e10cSrcweir         /* eliminate column */
76cdf0e10cSrcweir         for(j=i+1; j<rows; ++j)
77cdf0e10cSrcweir             for(k=cols-1; k>=i; --k)
78cdf0e10cSrcweir                 matrix[ j*cols + k ] -= matrix[ i*cols + k ] *
79cdf0e10cSrcweir                     matrix[ j*cols + i ] / matrix[ i*cols + i ];
80cdf0e10cSrcweir     }
81cdf0e10cSrcweir 
82cdf0e10cSrcweir     /* everything went well */
83cdf0e10cSrcweir     return true;
84cdf0e10cSrcweir }
85cdf0e10cSrcweir 
86cdf0e10cSrcweir 
87cdf0e10cSrcweir /** Retrieve solution vector of linear system by substituting backwards.
88cdf0e10cSrcweir 
89cdf0e10cSrcweir     This operation _relies_ on the previous successful
90cdf0e10cSrcweir     application of eliminate()!
91cdf0e10cSrcweir 
92cdf0e10cSrcweir     @param matrix
93cdf0e10cSrcweir     Matrix in upper diagonal form, as e.g. generated by eliminate()
94cdf0e10cSrcweir 
95cdf0e10cSrcweir     @param rows
96cdf0e10cSrcweir     Number of rows in matrix
97cdf0e10cSrcweir 
98cdf0e10cSrcweir     @param cols
99cdf0e10cSrcweir     Number of columns in matrix
100cdf0e10cSrcweir 
101cdf0e10cSrcweir     @param result
102cdf0e10cSrcweir     Result vector. Given matrix must have space for one column (rows entries).
103cdf0e10cSrcweir 
104cdf0e10cSrcweir     @return true, if back substitution was possible (i.e. no division
105*07a3d7f1SPedro Giffuni     by zero occurred).
106cdf0e10cSrcweir  */
107cdf0e10cSrcweir template <class Matrix, class Vector, typename BaseType>
substitute(const Matrix & matrix,int rows,int cols,Vector & result)108cdf0e10cSrcweir bool substitute(    const Matrix&   matrix,
109cdf0e10cSrcweir                     int             rows,
110cdf0e10cSrcweir                     int             cols,
111cdf0e10cSrcweir                     Vector&         result  )
112cdf0e10cSrcweir {
113cdf0e10cSrcweir     BaseType    temp;
114cdf0e10cSrcweir     int         j,k;    /* *must* be signed, when looping like: j>=0 ! */
115cdf0e10cSrcweir 
116cdf0e10cSrcweir     /* substitute backwards */
117cdf0e10cSrcweir     for(j=rows-1; j>=0; --j)
118cdf0e10cSrcweir     {
119cdf0e10cSrcweir         temp = 0.0;
120cdf0e10cSrcweir         for(k=j+1; k<cols-1; ++k)
121cdf0e10cSrcweir             temp += matrix[ j*cols + k ] * result[k];
122cdf0e10cSrcweir 
123cdf0e10cSrcweir         if( matrix[ j*cols + j ] == 0.0 )
124cdf0e10cSrcweir             return false;   /* imminent division by zero! */
125cdf0e10cSrcweir 
126cdf0e10cSrcweir         result[j] = (matrix[ j*cols + cols-1 ] - temp) / matrix[ j*cols + j ];
127cdf0e10cSrcweir     }
128cdf0e10cSrcweir 
129cdf0e10cSrcweir     /* everything went well */
130cdf0e10cSrcweir     return true;
131cdf0e10cSrcweir }
132cdf0e10cSrcweir 
133cdf0e10cSrcweir 
134cdf0e10cSrcweir /** This method determines solution of given linear system, if any
135cdf0e10cSrcweir 
136cdf0e10cSrcweir     This is a wrapper for eliminate and substitute, given matrix must
137cdf0e10cSrcweir     contain right side of equation as the last column.
138cdf0e10cSrcweir 
139cdf0e10cSrcweir     @param matrix
140cdf0e10cSrcweir     The matrix to operate on. Last column is the result vector (right
141cdf0e10cSrcweir     hand side of the linear equation). After successful termination,
142cdf0e10cSrcweir     the matrix is upper triangular. The matrix is expected to be in
143cdf0e10cSrcweir     row major order.
144cdf0e10cSrcweir 
145cdf0e10cSrcweir     @param rows
146cdf0e10cSrcweir     Number of rows in matrix
147cdf0e10cSrcweir 
148cdf0e10cSrcweir     @param cols
149cdf0e10cSrcweir     Number of columns in matrix
150cdf0e10cSrcweir 
151cdf0e10cSrcweir     @param minPivot
152cdf0e10cSrcweir     If the pivot element gets lesser than minPivot, this method fails,
153cdf0e10cSrcweir     otherwise, elimination succeeds and true is returned.
154cdf0e10cSrcweir 
155cdf0e10cSrcweir     @return true, if elimination succeeded.
156cdf0e10cSrcweir  */
157cdf0e10cSrcweir template <class Matrix, class Vector, typename BaseType>
solve(Matrix & matrix,int rows,int cols,Vector & result,BaseType minPivot)158cdf0e10cSrcweir bool solve( Matrix&     matrix,
159cdf0e10cSrcweir             int         rows,
160cdf0e10cSrcweir             int         cols,
161cdf0e10cSrcweir             Vector&     result,
162cdf0e10cSrcweir             BaseType    minPivot    )
163cdf0e10cSrcweir {
164cdf0e10cSrcweir     if( eliminate<Matrix,BaseType>(matrix, rows, cols, minPivot) )
165cdf0e10cSrcweir         return substitute<Matrix,Vector,BaseType>(matrix, rows, cols, result);
166cdf0e10cSrcweir 
167cdf0e10cSrcweir     return false;
168cdf0e10cSrcweir }
169