1<?xml version="1.0" encoding="UTF-8"?>
2
3<!--***********************************************************
4 *
5 * Licensed to the Apache Software Foundation (ASF) under one
6 * or more contributor license agreements.  See the NOTICE file
7 * distributed with this work for additional information
8 * regarding copyright ownership.  The ASF licenses this file
9 * to you under the Apache License, Version 2.0 (the
10 * "License"); you may not use this file except in compliance
11 * with the License.  You may obtain a copy of the License at
12 *
13 *   http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing,
16 * software distributed under the License is distributed on an
17 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
18 * KIND, either express or implied.  See the License for the
19 * specific language governing permissions and limitations
20 * under the License.
21 *
22 ***********************************************************-->
23
24<helpdocument version="1.0">
25<meta>
26<topic id="textsbasicshared03080102xml" indexer="include" status="PUBLISH">
27<title id="tit" xml-lang="en-US">Cos Function [Runtime]</title>
28<filename>/text/sbasic/shared/03080102.xhp</filename>
29</topic>
30</meta>
31<body>
32<section id="cos">
33<bookmark xml-lang="en-US" branch="index" id="bm_id3154923">
34<bookmark_value>Cos function</bookmark_value>
35</bookmark>
36<paragraph role="heading" id="hd_id3154923" xml-lang="en-US" level="1" l10n="U" oldref="1"><link href="text/sbasic/shared/03080102.xhp" name="Cos Function [Runtime]">Cos Function [Runtime]</link></paragraph>
37<paragraph role="paragraph" id="par_id3159413" xml-lang="en-US" l10n="U" oldref="2">Calculates the cosine of an angle. The angle is specified in radians. The result lies between -1 and 1.</paragraph>
38</section>
39<paragraph role="paragraph" id="par_id3150358" xml-lang="en-US" l10n="U" oldref="3">Using the angle Alpha, the Cos-Function calculates the ratio of the length of the side that is adjacent to the angle, divided by the length of the hypotenuse in a right-angled triangle.</paragraph>
40<paragraph role="paragraph" id="par_id3154141" xml-lang="en-US" l10n="U" oldref="4">Cos(Alpha) = Adjacent/Hypotenuse</paragraph>
41<paragraph role="heading" id="hd_id3154125" xml-lang="en-US" level="2" l10n="U" oldref="5">Syntax:</paragraph>
42<paragraph role="paragraph" id="par_id3145172" xml-lang="en-US" l10n="U" oldref="6">Cos (Number)</paragraph>
43<paragraph role="heading" id="hd_id3156214" xml-lang="en-US" level="2" l10n="U" oldref="7">Return value:</paragraph>
44<paragraph role="paragraph" id="par_id3150449" xml-lang="en-US" l10n="U" oldref="8">Double</paragraph>
45<paragraph role="heading" id="hd_id3153969" xml-lang="en-US" level="2" l10n="U" oldref="9">Parameters:</paragraph>
46<paragraph role="paragraph" id="par_id3153770" xml-lang="en-US" l10n="U" oldref="10">
47<emph>Number:</emph> Numeric expression that specifies an angle in radians that you want to calculate the cosine for.</paragraph>
48<paragraph role="paragraph" id="par_id3145749" xml-lang="en-US" l10n="U" oldref="11">To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.</paragraph>
49<paragraph role="paragraph" id="par_id3149664" xml-lang="en-US" l10n="U" oldref="12">degree=(radian*180)/pi</paragraph>
50<paragraph role="paragraph" id="par_id3146985" xml-lang="en-US" l10n="U" oldref="13">radian=(degree*pi)/180</paragraph>
51<paragraph role="paragraph" id="par_id3152885" xml-lang="en-US" l10n="U" oldref="14">Pi is here the fixed circle constant with the rounded value 3.14159...</paragraph>
52<embed href="text/sbasic/shared/00000003.xhp#errorcode"/>
53<embed href="text/sbasic/shared/00000003.xhp#err5"/>
54<paragraph role="heading" id="hd_id3153951" xml-lang="en-US" level="2" l10n="U" oldref="15">Example:</paragraph>
55<paragraph role="paragraph" id="par_id3155855" xml-lang="en-US" l10n="U" oldref="16">REM The following example allows for a right-angled triangle the input of</paragraph>
56<paragraph role="paragraph" id="par_id3149484" xml-lang="en-US" l10n="U" oldref="17">REM secant and angle (in degrees) and calculates the length of the hypotenuse:</paragraph>
57<paragraph role="paragraph" id="par_id3147428" xml-lang="en-US" l10n="U" oldref="18">Sub ExampleCosinus</paragraph>
58<paragraph role="paragraph" id="par_id3150010" xml-lang="en-US" l10n="U" oldref="19">REM rounded Pi = 3.14159</paragraph>
59<paragraph role="paragraph" id="par_id3149959" xml-lang="en-US" l10n="U" oldref="20">Dim d1 as Double, dAngle as Double</paragraph>
60<paragraph role="paragraph" id="par_id3144764" xml-lang="en-US" l10n="U" oldref="21">d1 = InputBox$ (""Enter the length of the adjacent side: ","Adjacent")</paragraph>
61<paragraph role="paragraph" id="par_id3154491" xml-lang="en-US" l10n="U" oldref="22">dAngle = InputBox$ ("Enter the angle Alpha (in degrees): ","Alpha")</paragraph>
62<paragraph role="paragraph" id="par_id3151074" xml-lang="en-US" l10n="U" oldref="23">Print "The length of the hypothenuse is"; (d1 / cos (dAngle * Pi / 180))</paragraph>
63<paragraph role="paragraph" id="par_id3149583" xml-lang="en-US" l10n="U" oldref="24">End Sub</paragraph>
64</body>
65</helpdocument>
66