1<?xml version="1.0" encoding="UTF-8"?> 2 3<!--*********************************************************** 4 * 5 * Licensed to the Apache Software Foundation (ASF) under one 6 * or more contributor license agreements. See the NOTICE file 7 * distributed with this work for additional information 8 * regarding copyright ownership. The ASF licenses this file 9 * to you under the Apache License, Version 2.0 (the 10 * "License"); you may not use this file except in compliance 11 * with the License. You may obtain a copy of the License at 12 * 13 * http://www.apache.org/licenses/LICENSE-2.0 14 * 15 * Unless required by applicable law or agreed to in writing, 16 * software distributed under the License is distributed on an 17 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY 18 * KIND, either express or implied. See the License for the 19 * specific language governing permissions and limitations 20 * under the License. 21 * 22 ***********************************************************--> 23 24<helpdocument version="1.0"> 25<meta> 26<topic id="textsbasicshared03080102xml" indexer="include" status="PUBLISH"> 27<title id="tit" xml-lang="en-US">Cos Function [Runtime]</title> 28<filename>/text/sbasic/shared/03080102.xhp</filename> 29</topic> 30</meta> 31<body> 32<section id="cos"> 33<bookmark xml-lang="en-US" branch="index" id="bm_id3154923"> 34<bookmark_value>Cos function</bookmark_value> 35</bookmark> 36<paragraph role="heading" id="hd_id3154923" xml-lang="en-US" level="1" l10n="U" oldref="1"><link href="text/sbasic/shared/03080102.xhp" name="Cos Function [Runtime]">Cos Function [Runtime]</link></paragraph> 37<paragraph role="paragraph" id="par_id3159413" xml-lang="en-US" l10n="U" oldref="2">Calculates the cosine of an angle. The angle is specified in radians. The result lies between -1 and 1.</paragraph> 38</section> 39<paragraph role="paragraph" id="par_id3150358" xml-lang="en-US" l10n="U" oldref="3">Using the angle Alpha, the Cos-Function calculates the ratio of the length of the side that is adjacent to the angle, divided by the length of the hypotenuse in a right-angled triangle.</paragraph> 40<paragraph role="paragraph" id="par_id3154141" xml-lang="en-US" l10n="U" oldref="4">Cos(Alpha) = Adjacent/Hypotenuse</paragraph> 41<paragraph role="heading" id="hd_id3154125" xml-lang="en-US" level="2" l10n="U" oldref="5">Syntax:</paragraph> 42<paragraph role="paragraph" id="par_id3145172" xml-lang="en-US" l10n="U" oldref="6">Cos (Number)</paragraph> 43<paragraph role="heading" id="hd_id3156214" xml-lang="en-US" level="2" l10n="U" oldref="7">Return value:</paragraph> 44<paragraph role="paragraph" id="par_id3150449" xml-lang="en-US" l10n="U" oldref="8">Double</paragraph> 45<paragraph role="heading" id="hd_id3153969" xml-lang="en-US" level="2" l10n="U" oldref="9">Parameters:</paragraph> 46<paragraph role="paragraph" id="par_id3153770" xml-lang="en-US" l10n="U" oldref="10"> 47<emph>Number:</emph> Numeric expression that specifies an angle in radians that you want to calculate the cosine for.</paragraph> 48<paragraph role="paragraph" id="par_id3145749" xml-lang="en-US" l10n="U" oldref="11">To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.</paragraph> 49<paragraph role="paragraph" id="par_id3149664" xml-lang="en-US" l10n="U" oldref="12">degree=(radian*180)/pi</paragraph> 50<paragraph role="paragraph" id="par_id3146985" xml-lang="en-US" l10n="U" oldref="13">radian=(degree*pi)/180</paragraph> 51<paragraph role="paragraph" id="par_id3152885" xml-lang="en-US" l10n="U" oldref="14">Pi is here the fixed circle constant with the rounded value 3.14159...</paragraph> 52<embed href="text/sbasic/shared/00000003.xhp#errorcode"/> 53<embed href="text/sbasic/shared/00000003.xhp#err5"/> 54<paragraph role="heading" id="hd_id3153951" xml-lang="en-US" level="2" l10n="U" oldref="15">Example:</paragraph> 55<paragraph role="paragraph" id="par_id3155855" xml-lang="en-US" l10n="U" oldref="16">REM The following example allows for a right-angled triangle the input of</paragraph> 56<paragraph role="paragraph" id="par_id3149484" xml-lang="en-US" l10n="U" oldref="17">REM secant and angle (in degrees) and calculates the length of the hypotenuse:</paragraph> 57<paragraph role="paragraph" id="par_id3147428" xml-lang="en-US" l10n="U" oldref="18">Sub ExampleCosinus</paragraph> 58<paragraph role="paragraph" id="par_id3150010" xml-lang="en-US" l10n="U" oldref="19">REM rounded Pi = 3.14159</paragraph> 59<paragraph role="paragraph" id="par_id3149959" xml-lang="en-US" l10n="U" oldref="20">Dim d1 as Double, dAngle as Double</paragraph> 60<paragraph role="paragraph" id="par_id3144764" xml-lang="en-US" l10n="U" oldref="21">d1 = InputBox$ (""Enter the length of the adjacent side: ","Adjacent")</paragraph> 61<paragraph role="paragraph" id="par_id3154491" xml-lang="en-US" l10n="U" oldref="22">dAngle = InputBox$ ("Enter the angle Alpha (in degrees): ","Alpha")</paragraph> 62<paragraph role="paragraph" id="par_id3151074" xml-lang="en-US" l10n="U" oldref="23">Print "The length of the hypothenuse is"; (d1 / cos (dAngle * Pi / 180))</paragraph> 63<paragraph role="paragraph" id="par_id3149583" xml-lang="en-US" l10n="U" oldref="24">End Sub</paragraph> 64</body> 65</helpdocument> 66