xref: /trunk/main/helpcontent2/source/text/scalc/01/04060182.xhp (revision b36d6b5d4a8853c4aeddd98077f7fd3f24aca401)
1cdf0e10cSrcweir<?xml version="1.0" encoding="UTF-8"?>
2cdf0e10cSrcweir
302dbb15cSAndrew Rist<!--***********************************************************
4cdf0e10cSrcweir *
502dbb15cSAndrew Rist * Licensed to the Apache Software Foundation (ASF) under one
602dbb15cSAndrew Rist * or more contributor license agreements.  See the NOTICE file
702dbb15cSAndrew Rist * distributed with this work for additional information
802dbb15cSAndrew Rist * regarding copyright ownership.  The ASF licenses this file
902dbb15cSAndrew Rist * to you under the Apache License, Version 2.0 (the
1002dbb15cSAndrew Rist * "License"); you may not use this file except in compliance
1102dbb15cSAndrew Rist * with the License.  You may obtain a copy of the License at
12cdf0e10cSrcweir *
1302dbb15cSAndrew Rist *   http://www.apache.org/licenses/LICENSE-2.0
14cdf0e10cSrcweir *
1502dbb15cSAndrew Rist * Unless required by applicable law or agreed to in writing,
1602dbb15cSAndrew Rist * software distributed under the License is distributed on an
1702dbb15cSAndrew Rist * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
1802dbb15cSAndrew Rist * KIND, either express or implied.  See the License for the
1902dbb15cSAndrew Rist * specific language governing permissions and limitations
2002dbb15cSAndrew Rist * under the License.
21cdf0e10cSrcweir *
2202dbb15cSAndrew Rist ***********************************************************-->
2302dbb15cSAndrew Rist
24d1c38b03Smseidel<helpdocument version="1.0">
25cdf0e10cSrcweir<meta>
26cdf0e10cSrcweir<topic id="textscalc0104060182xml" indexer="include">
27cdf0e10cSrcweir<title xml-lang="en-US" id="tit">Statistical Functions Part Two</title>
28cdf0e10cSrcweir<filename>/text/scalc/01/04060182.xhp</filename>
29cdf0e10cSrcweir</topic>
30cdf0e10cSrcweir</meta>
31cdf0e10cSrcweir<body>
32*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154372" role="heading" level="1" l10n="U"><variable id="fh"><link href="text/scalc/01/04060182.xhp" name="Statistical Functions Part Two">Statistical Functions Part Two</link>
33cdf0e10cSrcweir</variable></paragraph>
34cdf0e10cSrcweir<sort order="asc">
35cdf0e10cSrcweir<section id="finv">
36d1c38b03Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3145388">
37d1c38b03Smseidel<bookmark_value>FINV function</bookmark_value>
38cdf0e10cSrcweir<bookmark_value>inverse F probability distribution</bookmark_value>
39cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
40cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FINV" id="bm_id3146113" localize="false"/>
41*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3145388" role="heading" level="2" l10n="U">FINV</paragraph>
42*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155089" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FINV">Returns the inverse of the F probability distribution.</ahelp> The F distribution is used for F tests in order to set the relation between two differing data sets.</paragraph>
43*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153816" role="heading" level="3" l10n="U">Syntax</paragraph>
44*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153068" role="code" l10n="U">FINV(Number; DegreesFreedom1; DegreesFreedom2)</paragraph>
45*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146866" role="paragraph" l10n="U"><emph>Number</emph> is probability value for which the inverse F distribution is to be calculated.</paragraph>
46*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153914" role="paragraph" l10n="U"><emph>DegreesFreedom1</emph> is the number of degrees of freedom in the numerator of the F distribution.</paragraph>
47*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148607" role="paragraph" l10n="U"><emph>DegreesFreedom2</emph> is the number of degrees of freedom in the denominator of the F distribution.</paragraph>
48*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3156021" role="heading" level="3" l10n="U">Example</paragraph>
49*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145073" role="paragraph" l10n="U"><item type="input">=FINV(0.5;5;10)</item> yields 0.93.</paragraph>
50cdf0e10cSrcweir</section>
51cdf0e10cSrcweir<section id="fisher">
5288cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150888">
5388cae784Smseidel<bookmark_value>FISHER function</bookmark_value>
54cdf0e10cSrcweir</bookmark>
55cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FISHER" id="bm_id3146782" localize="false"/>
56*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150888" role="heading" level="2" l10n="U">FISHER</paragraph>
57*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155384" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FISHER">Returns the Fisher transformation for x and creates a function close to a normal distribution.</ahelp></paragraph>
58*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149898" role="heading" level="3" l10n="U">Syntax</paragraph>
59*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3143220" role="code" l10n="U">FISHER(Number)</paragraph>
60*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3159228" role="paragraph" l10n="U"><emph>Number</emph> is the value to be transformed.</paragraph>
61*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154763" role="heading" level="3" l10n="U">Example</paragraph>
62*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149383" role="paragraph" l10n="U"><item type="input">=FISHER(0.5)</item> yields 0.55.</paragraph>
63cdf0e10cSrcweir</section>
64cdf0e10cSrcweir<section id="fisherinv">
6588cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3155758">
6688cae784Smseidel<bookmark_value>FISHERINV function</bookmark_value>
67cdf0e10cSrcweir<bookmark_value>inverse of Fisher transformation</bookmark_value>
68cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
69cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FISHERINV" id="bm_id3149317" localize="false"/>
70*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3155758" role="heading" level="2" l10n="U">FISHERINV</paragraph>
71*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154734" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FISHERINV">Returns the inverse of the Fisher transformation for x and creates a function close to a normal distribution.</ahelp></paragraph>
72*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3155755" role="heading" level="3" l10n="U">Syntax</paragraph>
73*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146108" role="code" l10n="U">FISHERINV(Number)</paragraph>
74*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145115" role="paragraph" l10n="U"><emph>Number</emph> is the value that is to undergo reverse-transformation.</paragraph>
75*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3155744" role="heading" level="3" l10n="U">Example</paragraph>
76*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150432" role="paragraph" l10n="U"><item type="input">=FISHERINV(0.5)</item> yields 0.46.</paragraph>
77cdf0e10cSrcweir</section>
78cdf0e10cSrcweir<section id="ftest">
7988cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3151390">
8088cae784Smseidel<bookmark_value>FTEST function</bookmark_value>
81cdf0e10cSrcweir</bookmark>
82cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FTEST" id="bm_id3159263" localize="false"/>
83*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3151390" role="heading" level="2" l10n="U">FTEST</paragraph>
84*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150534" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FTEST">Returns the result of an F test.</ahelp></paragraph>
85*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3166466" role="heading" level="3" l10n="U">Syntax</paragraph>
86*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153024" role="code" l10n="U">FTEST(Data1; Data2)</paragraph>
87*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150032" role="paragraph" l10n="U"><emph>Data1</emph> is the first record array.</paragraph>
88*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153018" role="paragraph" l10n="U"><emph>Data2</emph> is the second record array.</paragraph>
89*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153123" role="heading" level="3" l10n="U">Example</paragraph>
90*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3159126" role="paragraph" l10n="U"><item type="input">=FTEST(A1:A30;B1:B12)</item> calculates whether the two data sets are different in their variance and returns the probability that both sets could have come from the same total population.</paragraph>
91cdf0e10cSrcweir</section>
92cdf0e10cSrcweir<section id="fdist">
9388cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150372">
9488cae784Smseidel<bookmark_value>FDIST function</bookmark_value>
95cdf0e10cSrcweir</bookmark>
96cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FVERT" id="bm_id3149722" localize="false"/>
97*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150372" role="heading" level="2" l10n="U">FDIST</paragraph>
98*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3152981" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FVERT">Calculates the values of an F distribution.</ahelp></paragraph>
99*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150484" role="heading" level="3" l10n="U">Syntax</paragraph>
100*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145826" role="code" l10n="U">FDIST(Number; DegreesFreedom1; DegreesFreedom2)</paragraph>
101*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150461" role="paragraph" l10n="U"><emph>Number</emph> is the value for which the F distribution is to be calculated.</paragraph>
102*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150029" role="paragraph" l10n="U"><emph>degreesFreedom1</emph> is the degrees of freedom in the numerator in the F distribution.</paragraph>
103*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146877" role="paragraph" l10n="U"><emph>degreesFreedom2</emph> is the degrees of freedom in the denominator in the F distribution.</paragraph>
104*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3147423" role="heading" level="3" l10n="U">Example</paragraph>
105*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150696" role="paragraph" l10n="U"><item type="input">=FDIST(0.8;8;12)</item> yields 0.61.</paragraph>
106cdf0e10cSrcweir</section>
107cdf0e10cSrcweir<section id="gamma">
108cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMA" id="bm_id0119200903221254" localize="false"/>
10988cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id0119200903223192">
11088cae784Smseidel<bookmark_value>GAMMA function</bookmark_value>
111cdf0e10cSrcweir</bookmark>
112cdf0e10cSrcweir<paragraph xml-lang="en-US" id="hd_id0119200903205393" role="heading" level="2" l10n="NEW">GAMMA</paragraph>
113cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id0119200903205379" role="paragraph" l10n="NEW"><ahelp hid=".">Returns the Gamma function value.</ahelp> Note that GAMMAINV is not the inverse of GAMMA, but of GAMMADIST.</paragraph>
114cdf0e10cSrcweir<paragraph xml-lang="en-US" id="hd_id0119200903271613" role="heading" level="3" l10n="NEW">Syntax</paragraph>
115cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id0119200903271614" role="paragraph" l10n="NEW">
116cdf0e10cSrcweir<emph>Number</emph> is the number for which the Gamma function value is to be calculated.</paragraph>
117cdf0e10cSrcweir</section>
118cdf0e10cSrcweir<section id="gammainv">
11988cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3154841">
12088cae784Smseidel<bookmark_value>GAMMAINV function</bookmark_value>
121cdf0e10cSrcweir</bookmark>
122cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMAINV" id="bm_id3149249" localize="false"/>
123*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154841" role="heading" level="2" l10n="U">GAMMAINV</paragraph>
124*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153932" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAMMAINV">Returns the inverse of the Gamma cumulative distribution GAMMADIST.</ahelp> This function allows you to search for variables with different distribution.</paragraph>
125*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149949" role="heading" level="3" l10n="U">Syntax</paragraph>
126*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155828" role="code" l10n="U">GAMMAINV(Number; Alpha; Beta)</paragraph>
127*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145138" role="paragraph" l10n="U"><emph>Number</emph> is the probability value for which the inverse Gamma distribution is to be calculated.</paragraph>
128*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3152785" role="paragraph" l10n="U"><emph>Alpha</emph> is the parameter Alpha of the Gamma distribution.</paragraph>
129*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154561" role="paragraph" l10n="U"><emph>Beta</emph> is the parameter Beta of the Gamma distribution.</paragraph>
130*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3148734" role="heading" level="3" l10n="U">Example</paragraph>
131*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153331" role="paragraph" l10n="U"><item type="input">=GAMMAINV(0.8;1;1)</item> yields 1.61.</paragraph>
132cdf0e10cSrcweir</section>
133cdf0e10cSrcweir<section id="gammaln">
13488cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3154806">
13588cae784Smseidel<bookmark_value>GAMMALN function</bookmark_value>
136cdf0e10cSrcweir<bookmark_value>natural logarithm of Gamma function</bookmark_value>
137cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
138cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMALN" id="bm_id3149511" localize="false"/>
139*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154806" role="heading" level="2" l10n="U">GAMMALN</paragraph>
140*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148572" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAMMALN">Returns the natural logarithm of the Gamma function: G(x).</ahelp></paragraph>
141*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3152999" role="heading" level="3" l10n="U">Syntax</paragraph>
142*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153112" role="code" l10n="U">GAMMALN(Number)</paragraph>
143*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154502" role="paragraph" l10n="U"><emph>Number</emph> is the value for which the natural logarithm of the Gamma function is to be calculated.</paragraph>
144*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153568" role="heading" level="3" l10n="U">Example</paragraph>
145*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153730" role="paragraph" l10n="U"><item type="input">=GAMMALN(2)</item> yields 0.</paragraph>
146cdf0e10cSrcweir</section>
147cdf0e10cSrcweir<section id="gammadist">
14888cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150132">
14988cae784Smseidel<bookmark_value>GAMMADIST function</bookmark_value>
150cdf0e10cSrcweir</bookmark>
151cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMAVERT" id="bm_id3154330" localize="false"/>
152*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150132" role="heading" level="2" l10n="U">GAMMADIST</paragraph>
153*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155931" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAMMAVERT">Returns the values of a Gamma distribution.</ahelp></paragraph>
154cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id0119200903333675" role="paragraph" l10n="NEW">The inverse function is GAMMAINV.</paragraph>
155*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3147373" role="heading" level="3" l10n="U">Syntax</paragraph>
156*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155436" role="code" l10n="U">GAMMADIST(Number; Alpha; Beta; C)</paragraph>
157*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150571" role="paragraph" l10n="U"><emph>Number</emph> is the value for which the Gamma distribution is to be calculated.</paragraph>
158*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145295" role="paragraph" l10n="U"><emph>Alpha</emph> is the parameter Alpha of the Gamma distribution.</paragraph>
159*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3151015" role="paragraph" l10n="U"><emph>Beta</emph> is the parameter Beta of the Gamma distribution</paragraph>
160*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3157972" role="paragraph" l10n="CHG"><emph>C</emph> (optional) = 0 or False calculates the density function <emph>C</emph> = 1 or True calculates the distribution.</paragraph>
161*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149535" role="heading" level="3" l10n="U">Example</paragraph>
162*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145354" role="paragraph" l10n="U"><item type="input">=GAMMADIST(2;1;1;1)</item> yields 0.86.</paragraph>
163cdf0e10cSrcweir</section>
164cdf0e10cSrcweir<section id="gauss">
16588cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150272">
16688cae784Smseidel<bookmark_value>GAUSS function</bookmark_value>
167cdf0e10cSrcweir<bookmark_value>normal distribution; standard</bookmark_value>
168cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
169cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAUSS" id="bm_id3149388" localize="false"/>
170*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150272" role="heading" level="2" l10n="U">GAUSS</paragraph>
171*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149030" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAUSS">Returns the standard normal cumulative distribution.</ahelp></paragraph>
172cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id2059694" role="paragraph" l10n="NEW">It is GAUSS(x)=NORMSDIST(x)-0.5</paragraph>
173*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153551" role="heading" level="3" l10n="U">Syntax</paragraph>
174*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155368" role="code" l10n="U">GAUSS(Number)</paragraph>
175*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153228" role="paragraph" l10n="CHG"><emph>Number</emph> is the value for which the value of the standard normal distribution is to be calculated.</paragraph>
176*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150691" role="heading" level="3" l10n="U">Example</paragraph>
177*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154867" role="paragraph" l10n="U"><item type="input">=GAUSS(0.19)</item> = 0.08</paragraph>
178*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148594" role="paragraph" l10n="U"><item type="input">=GAUSS(0.0375)</item> = 0.01</paragraph>
179cdf0e10cSrcweir</section>
180cdf0e10cSrcweir<section id="geomean">
18188cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3148425">
18288cae784Smseidel<bookmark_value>GEOMEAN function</bookmark_value>
183cdf0e10cSrcweir<bookmark_value>means;geometric</bookmark_value>
184cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
185cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GEOMITTEL" id="bm_id3149777" localize="false"/>
186*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3148425" role="heading" level="2" l10n="U">GEOMEAN</paragraph>
187*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156257" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GEOMITTEL">Returns the geometric mean of a sample.</ahelp></paragraph>
188*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3147167" role="heading" level="3" l10n="U">Syntax</paragraph>
189*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153720" role="code" l10n="U">GEOMEAN(Number1; Number2; ...Number30)</paragraph>
190*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3152585" role="paragraph" l10n="CHG"><emph>Number1, Number2,...Number30</emph> are numeric arguments or ranges that represent a random sample.</paragraph>
191*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3146146" role="heading" level="3" l10n="U">Example</paragraph>
192*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149819" role="paragraph" l10n="U"><item type="input">=GEOMEAN(23;46;69)</item> = 41.79. The geometric mean value of this random sample is therefore 41.79.</paragraph>
193cdf0e10cSrcweir</section>
194cdf0e10cSrcweir<section id="trimmean">
19588cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3152966">
19688cae784Smseidel<bookmark_value>TRIMMEAN function</bookmark_value>
197cdf0e10cSrcweir<bookmark_value>means;of data set without margin data</bookmark_value>
198cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
199cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GESTUTZTMITTEL" id="bm_id3145081" localize="false"/>
200*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3152966" role="heading" level="2" l10n="U">TRIMMEAN</paragraph>
201*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149716" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GESTUTZTMITTEL">Returns the mean of a data set without the Alpha percent of data at the margins.</ahelp></paragraph>
202*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149281" role="heading" level="3" l10n="U">Syntax</paragraph>
203*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154821" role="code" l10n="U">TRIMMEAN(Data; Alpha)</paragraph>
204*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155834" role="paragraph" l10n="U"><emph>Data</emph> is the array of data in the sample.</paragraph>
205*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156304" role="paragraph" l10n="U"><emph>Alpha</emph> is the percentage of the marginal data that will not be taken into consideration.</paragraph>
206*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3151180" role="heading" level="3" l10n="U">Example</paragraph>
207*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156130" role="paragraph" l10n="U"><item type="input">=TRIMMEAN(A1:A50; 0.1)</item> calculates the mean value of numbers in A1:A50, without taking into consideration the 5 percent of the values representing the highest values and the 5 percent of the values representing the lowest ones. The percentage numbers refer to the amount of the untrimmed mean value, not to the number of summands.</paragraph>
208cdf0e10cSrcweir</section>
209cdf0e10cSrcweir<section id="ztest">
21088cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3153216">
21188cae784Smseidel<bookmark_value>ZTEST function</bookmark_value>
212cdf0e10cSrcweir</bookmark>
213cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GTEST" id="bm_id3147569" localize="false"/>
214*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153216" role="heading" level="2" l10n="U">ZTEST</paragraph>
215*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150758" role="paragraph" l10n="CHG"><ahelp hid="HID_FUNC_GTEST">Calculates the probability of observing a z-statistic greater than the one computed based on a sample.</ahelp></paragraph>
216*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150872" role="heading" level="3" l10n="U">Syntax</paragraph>
217*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153274" role="code" l10n="CHG">ZTEST(Data; mu; Sigma)</paragraph>
218*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156109" role="paragraph" l10n="CHG"><emph>Data</emph> is the given sample, drawn from a normally distributed population.</paragraph>
219*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149977" role="paragraph" l10n="CHG"><emph>mu</emph> is the known mean of the population.</paragraph>
220*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154740" role="paragraph" l10n="CHG"><emph>Sigma</emph> (optional) is the known standard deviation of the population. If omitted, the standard deviation of the given sample is used.</paragraph>
2216f9008d8SAriel Constenla-Haile<paragraph xml-lang="en-US" id="par_id0305200911372999" role="paragraph" l10n="NEW">See also the <link href="https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_ZTEST_function">Wiki page</link>.</paragraph>
222cdf0e10cSrcweir</section>
223cdf0e10cSrcweir<section id="harmean">
22488cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3153623">
22588cae784Smseidel<bookmark_value>HARMEAN function</bookmark_value>
226cdf0e10cSrcweir<bookmark_value>means;harmonic</bookmark_value>
227cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
228cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_HARMITTEL" id="bm_id3154052" localize="false"/>
229*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153623" role="heading" level="2" l10n="U">HARMEAN</paragraph>
230*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155102" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_HARMITTEL">Returns the harmonic mean of a data set.</ahelp></paragraph>
231*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3146900" role="heading" level="3" l10n="U">Syntax</paragraph>
232*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149287" role="code" l10n="U">HARMEAN(Number1; Number2; ...Number30)</paragraph>
233*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154303" role="paragraph" l10n="CHG"><emph>Number1,Number2,...Number30</emph> are up to 30 values or ranges, that can be used to calculate the harmonic mean.</paragraph>
234*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3159179" role="heading" level="3" l10n="U">Example</paragraph>
235*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146093" role="paragraph" l10n="U"><item type="input">=HARMEAN(23;46;69)</item> = 37.64. The harmonic mean of this random sample is thus 37.64</paragraph>
236cdf0e10cSrcweir</section>
237cdf0e10cSrcweir<section id="hypgeomdist">
23888cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3152801">
23988cae784Smseidel<bookmark_value>HYPGEOMDIST function</bookmark_value>
240cdf0e10cSrcweir<bookmark_value>sampling without replacement</bookmark_value>
241cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment>
242cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_HYPGEOMVERT" id="bm_id3153910" localize="false"/>
243*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3152801" role="heading" level="2" l10n="U">HYPGEOMDIST</paragraph>
244*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3159341" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_HYPGEOMVERT">Returns the hypergeometric distribution.</ahelp></paragraph>
245*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154697" role="heading" level="3" l10n="U">Syntax</paragraph>
246*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155388" role="code" l10n="U">HYPGEOMDIST(X; NSample; Successes; NPopulation)</paragraph>
247*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154933" role="paragraph" l10n="U"><emph>X</emph> is the number of results achieved in the random sample.</paragraph>
248*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153106" role="paragraph" l10n="U"><emph>NSample</emph> is the size of the random sample.</paragraph>
249*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146992" role="paragraph" l10n="U"><emph>Successes</emph> is the number of possible results in the total population.</paragraph>
250*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148826" role="paragraph" l10n="U"><emph>NPopulation</emph> is the size of the total population.</paragraph>
251*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150529" role="heading" level="3" l10n="U">Example</paragraph>
252*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154904" role="paragraph" l10n="U"><item type="input">=HYPGEOMDIST(2;2;90;100)</item> yields 0.81. If 90 out of 100 pieces of buttered toast fall from the table and hit the floor with the buttered side first, then if 2 pieces of buttered toast are dropped from the table, the probability is 81%, that both will strike buttered side first.</paragraph>
253cdf0e10cSrcweir</section>
254cdf0e10cSrcweir</sort>
255cdf0e10cSrcweir<section id="relatedtopics">
256cdf0e10cSrcweir<embed href="text/scalc/01/04060100.xhp#drking"/>
257cdf0e10cSrcweir</section>
258cdf0e10cSrcweir</body>
259cdf0e10cSrcweir</helpdocument>
260