1cdf0e10cSrcweir<?xml version="1.0" encoding="UTF-8"?> 2cdf0e10cSrcweir 302dbb15cSAndrew Rist<!--*********************************************************** 4cdf0e10cSrcweir * 502dbb15cSAndrew Rist * Licensed to the Apache Software Foundation (ASF) under one 602dbb15cSAndrew Rist * or more contributor license agreements. See the NOTICE file 702dbb15cSAndrew Rist * distributed with this work for additional information 802dbb15cSAndrew Rist * regarding copyright ownership. The ASF licenses this file 902dbb15cSAndrew Rist * to you under the Apache License, Version 2.0 (the 1002dbb15cSAndrew Rist * "License"); you may not use this file except in compliance 1102dbb15cSAndrew Rist * with the License. You may obtain a copy of the License at 12cdf0e10cSrcweir * 1302dbb15cSAndrew Rist * http://www.apache.org/licenses/LICENSE-2.0 14cdf0e10cSrcweir * 1502dbb15cSAndrew Rist * Unless required by applicable law or agreed to in writing, 1602dbb15cSAndrew Rist * software distributed under the License is distributed on an 1702dbb15cSAndrew Rist * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY 1802dbb15cSAndrew Rist * KIND, either express or implied. See the License for the 1902dbb15cSAndrew Rist * specific language governing permissions and limitations 2002dbb15cSAndrew Rist * under the License. 21cdf0e10cSrcweir * 2202dbb15cSAndrew Rist ***********************************************************--> 2302dbb15cSAndrew Rist 24d1c38b03Smseidel<helpdocument version="1.0"> 25cdf0e10cSrcweir<meta> 26cdf0e10cSrcweir<topic id="textscalc0104060182xml" indexer="include"> 27cdf0e10cSrcweir<title xml-lang="en-US" id="tit">Statistical Functions Part Two</title> 28cdf0e10cSrcweir<filename>/text/scalc/01/04060182.xhp</filename> 29cdf0e10cSrcweir</topic> 30cdf0e10cSrcweir</meta> 31cdf0e10cSrcweir<body> 32*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154372" role="heading" level="1" l10n="U"><variable id="fh"><link href="text/scalc/01/04060182.xhp" name="Statistical Functions Part Two">Statistical Functions Part Two</link> 33cdf0e10cSrcweir</variable></paragraph> 34cdf0e10cSrcweir<sort order="asc"> 35cdf0e10cSrcweir<section id="finv"> 36d1c38b03Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3145388"> 37d1c38b03Smseidel<bookmark_value>FINV function</bookmark_value> 38cdf0e10cSrcweir<bookmark_value>inverse F probability distribution</bookmark_value> 39cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 40cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FINV" id="bm_id3146113" localize="false"/> 41*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3145388" role="heading" level="2" l10n="U">FINV</paragraph> 42*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155089" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FINV">Returns the inverse of the F probability distribution.</ahelp> The F distribution is used for F tests in order to set the relation between two differing data sets.</paragraph> 43*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153816" role="heading" level="3" l10n="U">Syntax</paragraph> 44*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153068" role="code" l10n="U">FINV(Number; DegreesFreedom1; DegreesFreedom2)</paragraph> 45*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146866" role="paragraph" l10n="U"><emph>Number</emph> is probability value for which the inverse F distribution is to be calculated.</paragraph> 46*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153914" role="paragraph" l10n="U"><emph>DegreesFreedom1</emph> is the number of degrees of freedom in the numerator of the F distribution.</paragraph> 47*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148607" role="paragraph" l10n="U"><emph>DegreesFreedom2</emph> is the number of degrees of freedom in the denominator of the F distribution.</paragraph> 48*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3156021" role="heading" level="3" l10n="U">Example</paragraph> 49*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145073" role="paragraph" l10n="U"><item type="input">=FINV(0.5;5;10)</item> yields 0.93.</paragraph> 50cdf0e10cSrcweir</section> 51cdf0e10cSrcweir<section id="fisher"> 5288cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150888"> 5388cae784Smseidel<bookmark_value>FISHER function</bookmark_value> 54cdf0e10cSrcweir</bookmark> 55cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FISHER" id="bm_id3146782" localize="false"/> 56*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150888" role="heading" level="2" l10n="U">FISHER</paragraph> 57*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155384" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FISHER">Returns the Fisher transformation for x and creates a function close to a normal distribution.</ahelp></paragraph> 58*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149898" role="heading" level="3" l10n="U">Syntax</paragraph> 59*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3143220" role="code" l10n="U">FISHER(Number)</paragraph> 60*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3159228" role="paragraph" l10n="U"><emph>Number</emph> is the value to be transformed.</paragraph> 61*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154763" role="heading" level="3" l10n="U">Example</paragraph> 62*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149383" role="paragraph" l10n="U"><item type="input">=FISHER(0.5)</item> yields 0.55.</paragraph> 63cdf0e10cSrcweir</section> 64cdf0e10cSrcweir<section id="fisherinv"> 6588cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3155758"> 6688cae784Smseidel<bookmark_value>FISHERINV function</bookmark_value> 67cdf0e10cSrcweir<bookmark_value>inverse of Fisher transformation</bookmark_value> 68cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 69cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FISHERINV" id="bm_id3149317" localize="false"/> 70*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3155758" role="heading" level="2" l10n="U">FISHERINV</paragraph> 71*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154734" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FISHERINV">Returns the inverse of the Fisher transformation for x and creates a function close to a normal distribution.</ahelp></paragraph> 72*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3155755" role="heading" level="3" l10n="U">Syntax</paragraph> 73*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146108" role="code" l10n="U">FISHERINV(Number)</paragraph> 74*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145115" role="paragraph" l10n="U"><emph>Number</emph> is the value that is to undergo reverse-transformation.</paragraph> 75*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3155744" role="heading" level="3" l10n="U">Example</paragraph> 76*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150432" role="paragraph" l10n="U"><item type="input">=FISHERINV(0.5)</item> yields 0.46.</paragraph> 77cdf0e10cSrcweir</section> 78cdf0e10cSrcweir<section id="ftest"> 7988cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3151390"> 8088cae784Smseidel<bookmark_value>FTEST function</bookmark_value> 81cdf0e10cSrcweir</bookmark> 82cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FTEST" id="bm_id3159263" localize="false"/> 83*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3151390" role="heading" level="2" l10n="U">FTEST</paragraph> 84*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150534" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FTEST">Returns the result of an F test.</ahelp></paragraph> 85*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3166466" role="heading" level="3" l10n="U">Syntax</paragraph> 86*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153024" role="code" l10n="U">FTEST(Data1; Data2)</paragraph> 87*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150032" role="paragraph" l10n="U"><emph>Data1</emph> is the first record array.</paragraph> 88*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153018" role="paragraph" l10n="U"><emph>Data2</emph> is the second record array.</paragraph> 89*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153123" role="heading" level="3" l10n="U">Example</paragraph> 90*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3159126" role="paragraph" l10n="U"><item type="input">=FTEST(A1:A30;B1:B12)</item> calculates whether the two data sets are different in their variance and returns the probability that both sets could have come from the same total population.</paragraph> 91cdf0e10cSrcweir</section> 92cdf0e10cSrcweir<section id="fdist"> 9388cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150372"> 9488cae784Smseidel<bookmark_value>FDIST function</bookmark_value> 95cdf0e10cSrcweir</bookmark> 96cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FVERT" id="bm_id3149722" localize="false"/> 97*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150372" role="heading" level="2" l10n="U">FDIST</paragraph> 98*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3152981" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_FVERT">Calculates the values of an F distribution.</ahelp></paragraph> 99*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150484" role="heading" level="3" l10n="U">Syntax</paragraph> 100*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145826" role="code" l10n="U">FDIST(Number; DegreesFreedom1; DegreesFreedom2)</paragraph> 101*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150461" role="paragraph" l10n="U"><emph>Number</emph> is the value for which the F distribution is to be calculated.</paragraph> 102*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150029" role="paragraph" l10n="U"><emph>degreesFreedom1</emph> is the degrees of freedom in the numerator in the F distribution.</paragraph> 103*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146877" role="paragraph" l10n="U"><emph>degreesFreedom2</emph> is the degrees of freedom in the denominator in the F distribution.</paragraph> 104*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3147423" role="heading" level="3" l10n="U">Example</paragraph> 105*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150696" role="paragraph" l10n="U"><item type="input">=FDIST(0.8;8;12)</item> yields 0.61.</paragraph> 106cdf0e10cSrcweir</section> 107cdf0e10cSrcweir<section id="gamma"> 108cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMA" id="bm_id0119200903221254" localize="false"/> 10988cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id0119200903223192"> 11088cae784Smseidel<bookmark_value>GAMMA function</bookmark_value> 111cdf0e10cSrcweir</bookmark> 112cdf0e10cSrcweir<paragraph xml-lang="en-US" id="hd_id0119200903205393" role="heading" level="2" l10n="NEW">GAMMA</paragraph> 113cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id0119200903205379" role="paragraph" l10n="NEW"><ahelp hid=".">Returns the Gamma function value.</ahelp> Note that GAMMAINV is not the inverse of GAMMA, but of GAMMADIST.</paragraph> 114cdf0e10cSrcweir<paragraph xml-lang="en-US" id="hd_id0119200903271613" role="heading" level="3" l10n="NEW">Syntax</paragraph> 115cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id0119200903271614" role="paragraph" l10n="NEW"> 116cdf0e10cSrcweir<emph>Number</emph> is the number for which the Gamma function value is to be calculated.</paragraph> 117cdf0e10cSrcweir</section> 118cdf0e10cSrcweir<section id="gammainv"> 11988cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3154841"> 12088cae784Smseidel<bookmark_value>GAMMAINV function</bookmark_value> 121cdf0e10cSrcweir</bookmark> 122cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMAINV" id="bm_id3149249" localize="false"/> 123*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154841" role="heading" level="2" l10n="U">GAMMAINV</paragraph> 124*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153932" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAMMAINV">Returns the inverse of the Gamma cumulative distribution GAMMADIST.</ahelp> This function allows you to search for variables with different distribution.</paragraph> 125*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149949" role="heading" level="3" l10n="U">Syntax</paragraph> 126*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155828" role="code" l10n="U">GAMMAINV(Number; Alpha; Beta)</paragraph> 127*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145138" role="paragraph" l10n="U"><emph>Number</emph> is the probability value for which the inverse Gamma distribution is to be calculated.</paragraph> 128*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3152785" role="paragraph" l10n="U"><emph>Alpha</emph> is the parameter Alpha of the Gamma distribution.</paragraph> 129*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154561" role="paragraph" l10n="U"><emph>Beta</emph> is the parameter Beta of the Gamma distribution.</paragraph> 130*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3148734" role="heading" level="3" l10n="U">Example</paragraph> 131*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153331" role="paragraph" l10n="U"><item type="input">=GAMMAINV(0.8;1;1)</item> yields 1.61.</paragraph> 132cdf0e10cSrcweir</section> 133cdf0e10cSrcweir<section id="gammaln"> 13488cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3154806"> 13588cae784Smseidel<bookmark_value>GAMMALN function</bookmark_value> 136cdf0e10cSrcweir<bookmark_value>natural logarithm of Gamma function</bookmark_value> 137cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 138cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMALN" id="bm_id3149511" localize="false"/> 139*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154806" role="heading" level="2" l10n="U">GAMMALN</paragraph> 140*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148572" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAMMALN">Returns the natural logarithm of the Gamma function: G(x).</ahelp></paragraph> 141*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3152999" role="heading" level="3" l10n="U">Syntax</paragraph> 142*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153112" role="code" l10n="U">GAMMALN(Number)</paragraph> 143*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154502" role="paragraph" l10n="U"><emph>Number</emph> is the value for which the natural logarithm of the Gamma function is to be calculated.</paragraph> 144*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153568" role="heading" level="3" l10n="U">Example</paragraph> 145*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153730" role="paragraph" l10n="U"><item type="input">=GAMMALN(2)</item> yields 0.</paragraph> 146cdf0e10cSrcweir</section> 147cdf0e10cSrcweir<section id="gammadist"> 14888cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150132"> 14988cae784Smseidel<bookmark_value>GAMMADIST function</bookmark_value> 150cdf0e10cSrcweir</bookmark> 151cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMAVERT" id="bm_id3154330" localize="false"/> 152*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150132" role="heading" level="2" l10n="U">GAMMADIST</paragraph> 153*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155931" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAMMAVERT">Returns the values of a Gamma distribution.</ahelp></paragraph> 154cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id0119200903333675" role="paragraph" l10n="NEW">The inverse function is GAMMAINV.</paragraph> 155*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3147373" role="heading" level="3" l10n="U">Syntax</paragraph> 156*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155436" role="code" l10n="U">GAMMADIST(Number; Alpha; Beta; C)</paragraph> 157*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150571" role="paragraph" l10n="U"><emph>Number</emph> is the value for which the Gamma distribution is to be calculated.</paragraph> 158*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145295" role="paragraph" l10n="U"><emph>Alpha</emph> is the parameter Alpha of the Gamma distribution.</paragraph> 159*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3151015" role="paragraph" l10n="U"><emph>Beta</emph> is the parameter Beta of the Gamma distribution</paragraph> 160*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3157972" role="paragraph" l10n="CHG"><emph>C</emph> (optional) = 0 or False calculates the density function <emph>C</emph> = 1 or True calculates the distribution.</paragraph> 161*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149535" role="heading" level="3" l10n="U">Example</paragraph> 162*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3145354" role="paragraph" l10n="U"><item type="input">=GAMMADIST(2;1;1;1)</item> yields 0.86.</paragraph> 163cdf0e10cSrcweir</section> 164cdf0e10cSrcweir<section id="gauss"> 16588cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3150272"> 16688cae784Smseidel<bookmark_value>GAUSS function</bookmark_value> 167cdf0e10cSrcweir<bookmark_value>normal distribution; standard</bookmark_value> 168cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 169cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAUSS" id="bm_id3149388" localize="false"/> 170*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150272" role="heading" level="2" l10n="U">GAUSS</paragraph> 171*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149030" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GAUSS">Returns the standard normal cumulative distribution.</ahelp></paragraph> 172cdf0e10cSrcweir<paragraph xml-lang="en-US" id="par_id2059694" role="paragraph" l10n="NEW">It is GAUSS(x)=NORMSDIST(x)-0.5</paragraph> 173*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153551" role="heading" level="3" l10n="U">Syntax</paragraph> 174*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155368" role="code" l10n="U">GAUSS(Number)</paragraph> 175*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153228" role="paragraph" l10n="CHG"><emph>Number</emph> is the value for which the value of the standard normal distribution is to be calculated.</paragraph> 176*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150691" role="heading" level="3" l10n="U">Example</paragraph> 177*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154867" role="paragraph" l10n="U"><item type="input">=GAUSS(0.19)</item> = 0.08</paragraph> 178*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148594" role="paragraph" l10n="U"><item type="input">=GAUSS(0.0375)</item> = 0.01</paragraph> 179cdf0e10cSrcweir</section> 180cdf0e10cSrcweir<section id="geomean"> 18188cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3148425"> 18288cae784Smseidel<bookmark_value>GEOMEAN function</bookmark_value> 183cdf0e10cSrcweir<bookmark_value>means;geometric</bookmark_value> 184cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 185cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GEOMITTEL" id="bm_id3149777" localize="false"/> 186*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3148425" role="heading" level="2" l10n="U">GEOMEAN</paragraph> 187*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156257" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GEOMITTEL">Returns the geometric mean of a sample.</ahelp></paragraph> 188*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3147167" role="heading" level="3" l10n="U">Syntax</paragraph> 189*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153720" role="code" l10n="U">GEOMEAN(Number1; Number2; ...Number30)</paragraph> 190*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3152585" role="paragraph" l10n="CHG"><emph>Number1, Number2,...Number30</emph> are numeric arguments or ranges that represent a random sample.</paragraph> 191*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3146146" role="heading" level="3" l10n="U">Example</paragraph> 192*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149819" role="paragraph" l10n="U"><item type="input">=GEOMEAN(23;46;69)</item> = 41.79. The geometric mean value of this random sample is therefore 41.79.</paragraph> 193cdf0e10cSrcweir</section> 194cdf0e10cSrcweir<section id="trimmean"> 19588cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3152966"> 19688cae784Smseidel<bookmark_value>TRIMMEAN function</bookmark_value> 197cdf0e10cSrcweir<bookmark_value>means;of data set without margin data</bookmark_value> 198cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 199cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GESTUTZTMITTEL" id="bm_id3145081" localize="false"/> 200*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3152966" role="heading" level="2" l10n="U">TRIMMEAN</paragraph> 201*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149716" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_GESTUTZTMITTEL">Returns the mean of a data set without the Alpha percent of data at the margins.</ahelp></paragraph> 202*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3149281" role="heading" level="3" l10n="U">Syntax</paragraph> 203*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154821" role="code" l10n="U">TRIMMEAN(Data; Alpha)</paragraph> 204*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155834" role="paragraph" l10n="U"><emph>Data</emph> is the array of data in the sample.</paragraph> 205*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156304" role="paragraph" l10n="U"><emph>Alpha</emph> is the percentage of the marginal data that will not be taken into consideration.</paragraph> 206*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3151180" role="heading" level="3" l10n="U">Example</paragraph> 207*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156130" role="paragraph" l10n="U"><item type="input">=TRIMMEAN(A1:A50; 0.1)</item> calculates the mean value of numbers in A1:A50, without taking into consideration the 5 percent of the values representing the highest values and the 5 percent of the values representing the lowest ones. The percentage numbers refer to the amount of the untrimmed mean value, not to the number of summands.</paragraph> 208cdf0e10cSrcweir</section> 209cdf0e10cSrcweir<section id="ztest"> 21088cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3153216"> 21188cae784Smseidel<bookmark_value>ZTEST function</bookmark_value> 212cdf0e10cSrcweir</bookmark> 213cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GTEST" id="bm_id3147569" localize="false"/> 214*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153216" role="heading" level="2" l10n="U">ZTEST</paragraph> 215*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3150758" role="paragraph" l10n="CHG"><ahelp hid="HID_FUNC_GTEST">Calculates the probability of observing a z-statistic greater than the one computed based on a sample.</ahelp></paragraph> 216*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150872" role="heading" level="3" l10n="U">Syntax</paragraph> 217*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153274" role="code" l10n="CHG">ZTEST(Data; mu; Sigma)</paragraph> 218*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3156109" role="paragraph" l10n="CHG"><emph>Data</emph> is the given sample, drawn from a normally distributed population.</paragraph> 219*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149977" role="paragraph" l10n="CHG"><emph>mu</emph> is the known mean of the population.</paragraph> 220*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154740" role="paragraph" l10n="CHG"><emph>Sigma</emph> (optional) is the known standard deviation of the population. If omitted, the standard deviation of the given sample is used.</paragraph> 2216f9008d8SAriel Constenla-Haile<paragraph xml-lang="en-US" id="par_id0305200911372999" role="paragraph" l10n="NEW">See also the <link href="https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_ZTEST_function">Wiki page</link>.</paragraph> 222cdf0e10cSrcweir</section> 223cdf0e10cSrcweir<section id="harmean"> 22488cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3153623"> 22588cae784Smseidel<bookmark_value>HARMEAN function</bookmark_value> 226cdf0e10cSrcweir<bookmark_value>means;harmonic</bookmark_value> 227cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 228cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_HARMITTEL" id="bm_id3154052" localize="false"/> 229*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3153623" role="heading" level="2" l10n="U">HARMEAN</paragraph> 230*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155102" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_HARMITTEL">Returns the harmonic mean of a data set.</ahelp></paragraph> 231*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3146900" role="heading" level="3" l10n="U">Syntax</paragraph> 232*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3149287" role="code" l10n="U">HARMEAN(Number1; Number2; ...Number30)</paragraph> 233*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154303" role="paragraph" l10n="CHG"><emph>Number1,Number2,...Number30</emph> are up to 30 values or ranges, that can be used to calculate the harmonic mean.</paragraph> 234*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3159179" role="heading" level="3" l10n="U">Example</paragraph> 235*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146093" role="paragraph" l10n="U"><item type="input">=HARMEAN(23;46;69)</item> = 37.64. The harmonic mean of this random sample is thus 37.64</paragraph> 236cdf0e10cSrcweir</section> 237cdf0e10cSrcweir<section id="hypgeomdist"> 23888cae784Smseidel<bookmark xml-lang="en-US" branch="index" id="bm_id3152801"> 23988cae784Smseidel<bookmark_value>HYPGEOMDIST function</bookmark_value> 240cdf0e10cSrcweir<bookmark_value>sampling without replacement</bookmark_value> 241cdf0e10cSrcweir</bookmark><comment>mw added one entry</comment> 242cdf0e10cSrcweir<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_HYPGEOMVERT" id="bm_id3153910" localize="false"/> 243*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3152801" role="heading" level="2" l10n="U">HYPGEOMDIST</paragraph> 244*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3159341" role="paragraph" l10n="U"><ahelp hid="HID_FUNC_HYPGEOMVERT">Returns the hypergeometric distribution.</ahelp></paragraph> 245*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3154697" role="heading" level="3" l10n="U">Syntax</paragraph> 246*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3155388" role="code" l10n="U">HYPGEOMDIST(X; NSample; Successes; NPopulation)</paragraph> 247*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154933" role="paragraph" l10n="U"><emph>X</emph> is the number of results achieved in the random sample.</paragraph> 248*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3153106" role="paragraph" l10n="U"><emph>NSample</emph> is the size of the random sample.</paragraph> 249*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3146992" role="paragraph" l10n="U"><emph>Successes</emph> is the number of possible results in the total population.</paragraph> 250*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3148826" role="paragraph" l10n="U"><emph>NPopulation</emph> is the size of the total population.</paragraph> 251*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="hd_id3150529" role="heading" level="3" l10n="U">Example</paragraph> 252*b36d6b5dSmseidel<paragraph xml-lang="en-US" id="par_id3154904" role="paragraph" l10n="U"><item type="input">=HYPGEOMDIST(2;2;90;100)</item> yields 0.81. If 90 out of 100 pieces of buttered toast fall from the table and hit the floor with the buttered side first, then if 2 pieces of buttered toast are dropped from the table, the probability is 81%, that both will strike buttered side first.</paragraph> 253cdf0e10cSrcweir</section> 254cdf0e10cSrcweir</sort> 255cdf0e10cSrcweir<section id="relatedtopics"> 256cdf0e10cSrcweir<embed href="text/scalc/01/04060100.xhp#drking"/> 257cdf0e10cSrcweir</section> 258cdf0e10cSrcweir</body> 259cdf0e10cSrcweir</helpdocument> 260