1*a06b8d1bSAndrew Rist /************************************************************** 2cdf0e10cSrcweir * 3*a06b8d1bSAndrew Rist * Licensed to the Apache Software Foundation (ASF) under one 4*a06b8d1bSAndrew Rist * or more contributor license agreements. See the NOTICE file 5*a06b8d1bSAndrew Rist * distributed with this work for additional information 6*a06b8d1bSAndrew Rist * regarding copyright ownership. The ASF licenses this file 7*a06b8d1bSAndrew Rist * to you under the Apache License, Version 2.0 (the 8*a06b8d1bSAndrew Rist * "License"); you may not use this file except in compliance 9*a06b8d1bSAndrew Rist * with the License. You may obtain a copy of the License at 10cdf0e10cSrcweir * 11*a06b8d1bSAndrew Rist * http://www.apache.org/licenses/LICENSE-2.0 12cdf0e10cSrcweir * 13*a06b8d1bSAndrew Rist * Unless required by applicable law or agreed to in writing, 14*a06b8d1bSAndrew Rist * software distributed under the License is distributed on an 15*a06b8d1bSAndrew Rist * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY 16*a06b8d1bSAndrew Rist * KIND, either express or implied. See the License for the 17*a06b8d1bSAndrew Rist * specific language governing permissions and limitations 18*a06b8d1bSAndrew Rist * under the License. 19cdf0e10cSrcweir * 20*a06b8d1bSAndrew Rist *************************************************************/ 21*a06b8d1bSAndrew Rist 22*a06b8d1bSAndrew Rist 23cdf0e10cSrcweir 24cdf0e10cSrcweir #include "bessel.hxx" 25cdf0e10cSrcweir #include "analysishelper.hxx" 26cdf0e10cSrcweir 27cdf0e10cSrcweir #include <rtl/math.hxx> 28cdf0e10cSrcweir 29cdf0e10cSrcweir using ::com::sun::star::lang::IllegalArgumentException; 30cdf0e10cSrcweir using ::com::sun::star::sheet::NoConvergenceException; 31cdf0e10cSrcweir 32cdf0e10cSrcweir namespace sca { 33cdf0e10cSrcweir namespace analysis { 34cdf0e10cSrcweir 35cdf0e10cSrcweir // ============================================================================ 36cdf0e10cSrcweir 37cdf0e10cSrcweir const double f_PI = 3.1415926535897932385; 38cdf0e10cSrcweir const double f_2_PI = 2.0 * f_PI; 39cdf0e10cSrcweir const double f_PI_DIV_2 = f_PI / 2.0; 40cdf0e10cSrcweir const double f_PI_DIV_4 = f_PI / 4.0; 41cdf0e10cSrcweir const double f_2_DIV_PI = 2.0 / f_PI; 42cdf0e10cSrcweir 43cdf0e10cSrcweir const double THRESHOLD = 30.0; // Threshold for usage of approximation formula. 44cdf0e10cSrcweir const double MAXEPSILON = 1e-10; // Maximum epsilon for end of iteration. 45cdf0e10cSrcweir const sal_Int32 MAXITER = 100; // Maximum number of iterations. 46cdf0e10cSrcweir 47cdf0e10cSrcweir // ============================================================================ 48cdf0e10cSrcweir // BESSEL J 49cdf0e10cSrcweir // ============================================================================ 50cdf0e10cSrcweir 51cdf0e10cSrcweir /* The BESSEL function, first kind, unmodified: 52cdf0e10cSrcweir The algorithm follows 53cdf0e10cSrcweir http://www.reference-global.com/isbn/978-3-11-020354-7 54cdf0e10cSrcweir Numerical Mathematics 1 / Numerische Mathematik 1, 55cdf0e10cSrcweir An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung 56cdf0e10cSrcweir Deuflhard, Peter; Hohmann, Andreas 57cdf0e10cSrcweir Berlin, New York (Walter de Gruyter) 2008 58cdf0e10cSrcweir 4. ueberarb. u. erw. Aufl. 2008 59cdf0e10cSrcweir eBook ISBN: 978-3-11-020355-4 60cdf0e10cSrcweir Chapter 6.3.2 , algorithm 6.24 61cdf0e10cSrcweir The source is in German. 62cdf0e10cSrcweir The BesselJ-function is a special case of the adjoint summation with 63cdf0e10cSrcweir a_k = 2*(k-1)/x for k=1,... 64cdf0e10cSrcweir b_k = -1, for all k, directly substituted 65cdf0e10cSrcweir m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly 66cdf0e10cSrcweir alpha_k=1 for k=N and alpha_k=0 otherwise 67cdf0e10cSrcweir */ 68cdf0e10cSrcweir 69cdf0e10cSrcweir // ---------------------------------------------------------------------------- 70cdf0e10cSrcweir 71cdf0e10cSrcweir double BesselJ( double x, sal_Int32 N ) throw (IllegalArgumentException, NoConvergenceException) 72cdf0e10cSrcweir 73cdf0e10cSrcweir { 74cdf0e10cSrcweir if( N < 0 ) 75cdf0e10cSrcweir throw IllegalArgumentException(); 76cdf0e10cSrcweir if (x==0.0) 77cdf0e10cSrcweir return (N==0) ? 1.0 : 0.0; 78cdf0e10cSrcweir 79cdf0e10cSrcweir /* The algorithm works only for x>0, therefore remember sign. BesselJ 80cdf0e10cSrcweir with integer order N is an even function for even N (means J(-x)=J(x)) 81cdf0e10cSrcweir and an odd function for odd N (means J(-x)=-J(x)).*/ 82cdf0e10cSrcweir double fSign = (N % 2 == 1 && x < 0) ? -1.0 : 1.0; 83cdf0e10cSrcweir double fX = fabs(x); 84cdf0e10cSrcweir 85cdf0e10cSrcweir const double fMaxIteration = 9000000.0; //experimental, for to return in < 3 seconds 86cdf0e10cSrcweir double fEstimateIteration = fX * 1.5 + N; 87cdf0e10cSrcweir bool bAsymptoticPossible = pow(fX,0.4) > N; 88cdf0e10cSrcweir if (fEstimateIteration > fMaxIteration) 89cdf0e10cSrcweir { 90cdf0e10cSrcweir if (bAsymptoticPossible) 91cdf0e10cSrcweir return fSign * sqrt(f_2_DIV_PI/fX)* cos(fX-N*f_PI_DIV_2-f_PI_DIV_4); 92cdf0e10cSrcweir else 93cdf0e10cSrcweir throw NoConvergenceException(); 94cdf0e10cSrcweir } 95cdf0e10cSrcweir 96cdf0e10cSrcweir double epsilon = 1.0e-15; // relative error 97cdf0e10cSrcweir bool bHasfound = false; 98cdf0e10cSrcweir double k= 0.0; 99cdf0e10cSrcweir // e_{-1} = 0; e_0 = alpha_0 / b_2 100cdf0e10cSrcweir double u ; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0 101cdf0e10cSrcweir 102cdf0e10cSrcweir // first used with k=1 103cdf0e10cSrcweir double m_bar; // m_bar_k = m_k * f_bar_{k-1} 104cdf0e10cSrcweir double g_bar; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1} 105cdf0e10cSrcweir double g_bar_delta_u; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k 106cdf0e10cSrcweir // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1} 107cdf0e10cSrcweir // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1 108cdf0e10cSrcweir double g = 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0 109cdf0e10cSrcweir double delta_u = 0.0; // dummy initialize, first used with * 0 110cdf0e10cSrcweir double f_bar = -1.0; // f_bar_k = 1/f_k, but only used for k=0 111cdf0e10cSrcweir 112cdf0e10cSrcweir if (N==0) 113cdf0e10cSrcweir { 114cdf0e10cSrcweir //k=0; alpha_0 = 1.0 115cdf0e10cSrcweir u = 1.0; // u_0 = alpha_0 116cdf0e10cSrcweir // k = 1.0; at least one step is necessary 117cdf0e10cSrcweir // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0 118cdf0e10cSrcweir g_bar_delta_u = 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0 119cdf0e10cSrcweir g_bar = - 2.0/fX; // k = 1.0, g = 0.0 120cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar; 121cdf0e10cSrcweir u = u + delta_u ; // u_k = u_{k-1} + delta_u_k 122cdf0e10cSrcweir g = -1.0 / g_bar; // g_k=b_{k+2}/g_bar_k 123cdf0e10cSrcweir f_bar = f_bar * g; // f_bar_k = f_bar_{k-1}* g_k 124cdf0e10cSrcweir k = 2.0; 125cdf0e10cSrcweir // From now on all alpha_k = 0.0 and k > N+1 126cdf0e10cSrcweir } 127cdf0e10cSrcweir else 128cdf0e10cSrcweir { // N >= 1 and alpha_k = 0.0 for k<N 129cdf0e10cSrcweir u=0.0; // u_0 = alpha_0 130cdf0e10cSrcweir for (k =1.0; k<= N-1; k = k + 1.0) 131cdf0e10cSrcweir { 132cdf0e10cSrcweir m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar; 133cdf0e10cSrcweir g_bar_delta_u = - g * delta_u - m_bar * u; // alpha_k = 0.0 134cdf0e10cSrcweir g_bar = m_bar - 2.0*k/fX + g; 135cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar; 136cdf0e10cSrcweir u = u + delta_u; 137cdf0e10cSrcweir g = -1.0/g_bar; 138cdf0e10cSrcweir f_bar=f_bar * g; 139cdf0e10cSrcweir } 140cdf0e10cSrcweir // Step alpha_N = 1.0 141cdf0e10cSrcweir m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar; 142cdf0e10cSrcweir g_bar_delta_u = f_bar - g * delta_u - m_bar * u; // alpha_k = 1.0 143cdf0e10cSrcweir g_bar = m_bar - 2.0*k/fX + g; 144cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar; 145cdf0e10cSrcweir u = u + delta_u; 146cdf0e10cSrcweir g = -1.0/g_bar; 147cdf0e10cSrcweir f_bar = f_bar * g; 148cdf0e10cSrcweir k = k + 1.0; 149cdf0e10cSrcweir } 150cdf0e10cSrcweir // Loop until desired accuracy, always alpha_k = 0.0 151cdf0e10cSrcweir do 152cdf0e10cSrcweir { 153cdf0e10cSrcweir m_bar = 2.0 * fmod(k-1.0, 2.0) * f_bar; 154cdf0e10cSrcweir g_bar_delta_u = - g * delta_u - m_bar * u; 155cdf0e10cSrcweir g_bar = m_bar - 2.0*k/fX + g; 156cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar; 157cdf0e10cSrcweir u = u + delta_u; 158cdf0e10cSrcweir g = -1.0/g_bar; 159cdf0e10cSrcweir f_bar = f_bar * g; 160cdf0e10cSrcweir bHasfound = (fabs(delta_u)<=fabs(u)*epsilon); 161cdf0e10cSrcweir k = k + 1.0; 162cdf0e10cSrcweir } 163cdf0e10cSrcweir while (!bHasfound && k <= fMaxIteration); 164cdf0e10cSrcweir if (bHasfound) 165cdf0e10cSrcweir return u * fSign; 166cdf0e10cSrcweir else 167cdf0e10cSrcweir throw NoConvergenceException(); // unlikely to happen 168cdf0e10cSrcweir } 169cdf0e10cSrcweir 170cdf0e10cSrcweir // ============================================================================ 171cdf0e10cSrcweir // BESSEL I 172cdf0e10cSrcweir // ============================================================================ 173cdf0e10cSrcweir 174cdf0e10cSrcweir /* The BESSEL function, first kind, modified: 175cdf0e10cSrcweir 176cdf0e10cSrcweir inf (x/2)^(n+2k) 177cdf0e10cSrcweir I_n(x) = SUM TERM(n,k) with TERM(n,k) := -------------- 178cdf0e10cSrcweir k=0 k! (n+k)! 179cdf0e10cSrcweir 180cdf0e10cSrcweir No asymptotic approximation used, see issue 43040. 181cdf0e10cSrcweir */ 182cdf0e10cSrcweir 183cdf0e10cSrcweir // ---------------------------------------------------------------------------- 184cdf0e10cSrcweir 185cdf0e10cSrcweir double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConvergenceException ) 186cdf0e10cSrcweir { 187cdf0e10cSrcweir const double fEpsilon = 1.0E-15; 188cdf0e10cSrcweir const sal_Int32 nMaxIteration = 2000; 189cdf0e10cSrcweir const double fXHalf = x / 2.0; 190cdf0e10cSrcweir if( n < 0 ) 191cdf0e10cSrcweir throw IllegalArgumentException(); 192cdf0e10cSrcweir 193cdf0e10cSrcweir double fResult = 0.0; 194cdf0e10cSrcweir 195cdf0e10cSrcweir /* Start the iteration without TERM(n,0), which is set here. 196cdf0e10cSrcweir 197cdf0e10cSrcweir TERM(n,0) = (x/2)^n / n! 198cdf0e10cSrcweir */ 199cdf0e10cSrcweir sal_Int32 nK = 0; 200cdf0e10cSrcweir double fTerm = 1.0; 201cdf0e10cSrcweir // avoid overflow in Fak(n) 202cdf0e10cSrcweir for( nK = 1; nK <= n; ++nK ) 203cdf0e10cSrcweir { 204cdf0e10cSrcweir fTerm = fTerm / static_cast< double >( nK ) * fXHalf; 205cdf0e10cSrcweir } 206cdf0e10cSrcweir fResult = fTerm; // Start result with TERM(n,0). 207cdf0e10cSrcweir if( fTerm != 0.0 ) 208cdf0e10cSrcweir { 209cdf0e10cSrcweir nK = 1; 210cdf0e10cSrcweir do 211cdf0e10cSrcweir { 212cdf0e10cSrcweir /* Calculation of TERM(n,k) from TERM(n,k-1): 213cdf0e10cSrcweir 214cdf0e10cSrcweir (x/2)^(n+2k) 215cdf0e10cSrcweir TERM(n,k) = -------------- 216cdf0e10cSrcweir k! (n+k)! 217cdf0e10cSrcweir 218cdf0e10cSrcweir (x/2)^2 (x/2)^(n+2(k-1)) 219cdf0e10cSrcweir = -------------------------- 220cdf0e10cSrcweir k (k-1)! (n+k) (n+k-1)! 221cdf0e10cSrcweir 222cdf0e10cSrcweir (x/2)^2 (x/2)^(n+2(k-1)) 223cdf0e10cSrcweir = --------- * ------------------ 224cdf0e10cSrcweir k(n+k) (k-1)! (n+k-1)! 225cdf0e10cSrcweir 226cdf0e10cSrcweir x^2/4 227cdf0e10cSrcweir = -------- TERM(n,k-1) 228cdf0e10cSrcweir k(n+k) 229cdf0e10cSrcweir */ 230cdf0e10cSrcweir fTerm = fTerm * fXHalf / static_cast<double>(nK) * fXHalf / static_cast<double>(nK+n); 231cdf0e10cSrcweir fResult += fTerm; 232cdf0e10cSrcweir nK++; 233cdf0e10cSrcweir } 234cdf0e10cSrcweir while( (fabs( fTerm ) > fabs(fResult) * fEpsilon) && (nK < nMaxIteration) ); 235cdf0e10cSrcweir 236cdf0e10cSrcweir } 237cdf0e10cSrcweir return fResult; 238cdf0e10cSrcweir } 239cdf0e10cSrcweir 240cdf0e10cSrcweir 241cdf0e10cSrcweir // ============================================================================ 242cdf0e10cSrcweir 243cdf0e10cSrcweir double Besselk0( double fNum ) throw( IllegalArgumentException, NoConvergenceException ) 244cdf0e10cSrcweir { 245cdf0e10cSrcweir double fRet; 246cdf0e10cSrcweir 247cdf0e10cSrcweir if( fNum <= 2.0 ) 248cdf0e10cSrcweir { 249cdf0e10cSrcweir double fNum2 = fNum * 0.5; 250cdf0e10cSrcweir double y = fNum2 * fNum2; 251cdf0e10cSrcweir 252cdf0e10cSrcweir fRet = -log( fNum2 ) * BesselI( fNum, 0 ) + 253cdf0e10cSrcweir ( -0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590e-1 + 254cdf0e10cSrcweir y * ( 0.262698e-2 + y * ( 0.10750e-3 + y * 0.74e-5 ) ) ) ) ) ); 255cdf0e10cSrcweir } 256cdf0e10cSrcweir else 257cdf0e10cSrcweir { 258cdf0e10cSrcweir double y = 2.0 / fNum; 259cdf0e10cSrcweir 260cdf0e10cSrcweir fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( -0.7832358e-1 + 261cdf0e10cSrcweir y * ( 0.2189568e-1 + y * ( -0.1062446e-1 + y * ( 0.587872e-2 + 262cdf0e10cSrcweir y * ( -0.251540e-2 + y * 0.53208e-3 ) ) ) ) ) ); 263cdf0e10cSrcweir } 264cdf0e10cSrcweir 265cdf0e10cSrcweir return fRet; 266cdf0e10cSrcweir } 267cdf0e10cSrcweir 268cdf0e10cSrcweir 269cdf0e10cSrcweir double Besselk1( double fNum ) throw( IllegalArgumentException, NoConvergenceException ) 270cdf0e10cSrcweir { 271cdf0e10cSrcweir double fRet; 272cdf0e10cSrcweir 273cdf0e10cSrcweir if( fNum <= 2.0 ) 274cdf0e10cSrcweir { 275cdf0e10cSrcweir double fNum2 = fNum * 0.5; 276cdf0e10cSrcweir double y = fNum2 * fNum2; 277cdf0e10cSrcweir 278cdf0e10cSrcweir fRet = log( fNum2 ) * BesselI( fNum, 1 ) + 279cdf0e10cSrcweir ( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( -0.18156897 + y * ( -0.1919402e-1 + 280cdf0e10cSrcweir y * ( -0.110404e-2 + y * ( -0.4686e-4 ) ) ) ) ) ) ) 281cdf0e10cSrcweir / fNum; 282cdf0e10cSrcweir } 283cdf0e10cSrcweir else 284cdf0e10cSrcweir { 285cdf0e10cSrcweir double y = 2.0 / fNum; 286cdf0e10cSrcweir 287cdf0e10cSrcweir fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( 0.23498619 + 288cdf0e10cSrcweir y * ( -0.3655620e-1 + y * ( 0.1504268e-1 + y * ( -0.780353e-2 + 289cdf0e10cSrcweir y * ( 0.325614e-2 + y * ( -0.68245e-3 ) ) ) ) ) ) ); 290cdf0e10cSrcweir } 291cdf0e10cSrcweir 292cdf0e10cSrcweir return fRet; 293cdf0e10cSrcweir } 294cdf0e10cSrcweir 295cdf0e10cSrcweir 296cdf0e10cSrcweir double BesselK( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException ) 297cdf0e10cSrcweir { 298cdf0e10cSrcweir switch( nOrder ) 299cdf0e10cSrcweir { 300cdf0e10cSrcweir case 0: return Besselk0( fNum ); 301cdf0e10cSrcweir case 1: return Besselk1( fNum ); 302cdf0e10cSrcweir default: 303cdf0e10cSrcweir { 304cdf0e10cSrcweir double fBkp; 305cdf0e10cSrcweir 306cdf0e10cSrcweir double fTox = 2.0 / fNum; 307cdf0e10cSrcweir double fBkm = Besselk0( fNum ); 308cdf0e10cSrcweir double fBk = Besselk1( fNum ); 309cdf0e10cSrcweir 310cdf0e10cSrcweir for( sal_Int32 n = 1 ; n < nOrder ; n++ ) 311cdf0e10cSrcweir { 312cdf0e10cSrcweir fBkp = fBkm + double( n ) * fTox * fBk; 313cdf0e10cSrcweir fBkm = fBk; 314cdf0e10cSrcweir fBk = fBkp; 315cdf0e10cSrcweir } 316cdf0e10cSrcweir 317cdf0e10cSrcweir return fBk; 318cdf0e10cSrcweir } 319cdf0e10cSrcweir } 320cdf0e10cSrcweir } 321cdf0e10cSrcweir 322cdf0e10cSrcweir // ============================================================================ 323cdf0e10cSrcweir // BESSEL Y 324cdf0e10cSrcweir // ============================================================================ 325cdf0e10cSrcweir 326cdf0e10cSrcweir /* The BESSEL function, second kind, unmodified: 327cdf0e10cSrcweir The algorithm for order 0 and for order 1 follows 328cdf0e10cSrcweir http://www.reference-global.com/isbn/978-3-11-020354-7 329cdf0e10cSrcweir Numerical Mathematics 1 / Numerische Mathematik 1, 330cdf0e10cSrcweir An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung 331cdf0e10cSrcweir Deuflhard, Peter; Hohmann, Andreas 332cdf0e10cSrcweir Berlin, New York (Walter de Gruyter) 2008 333cdf0e10cSrcweir 4. ueberarb. u. erw. Aufl. 2008 334cdf0e10cSrcweir eBook ISBN: 978-3-11-020355-4 335cdf0e10cSrcweir Chapter 6.3.2 , algorithm 6.24 336cdf0e10cSrcweir The source is in German. 337cdf0e10cSrcweir See #i31656# for a commented version of the implementation, attachment #desc6 338cdf0e10cSrcweir http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt 339cdf0e10cSrcweir */ 340cdf0e10cSrcweir 341cdf0e10cSrcweir double Bessely0( double fX ) throw( IllegalArgumentException, NoConvergenceException ) 342cdf0e10cSrcweir { 343cdf0e10cSrcweir if (fX <= 0) 344cdf0e10cSrcweir throw IllegalArgumentException(); 345cdf0e10cSrcweir const double fMaxIteration = 9000000.0; // should not be reached 346cdf0e10cSrcweir if (fX > 5.0e+6) // iteration is not considerable better then approximation 347cdf0e10cSrcweir return sqrt(1/f_PI/fX) 348cdf0e10cSrcweir *(rtl::math::sin(fX)-rtl::math::cos(fX)); 349cdf0e10cSrcweir const double epsilon = 1.0e-15; 350cdf0e10cSrcweir const double EulerGamma = 0.57721566490153286060; 351cdf0e10cSrcweir double alpha = log(fX/2.0)+EulerGamma; 352cdf0e10cSrcweir double u = alpha; 353cdf0e10cSrcweir 354cdf0e10cSrcweir double k = 1.0; 355cdf0e10cSrcweir double m_bar = 0.0; 356cdf0e10cSrcweir double g_bar_delta_u = 0.0; 357cdf0e10cSrcweir double g_bar = -2.0 / fX; 358cdf0e10cSrcweir double delta_u = g_bar_delta_u / g_bar; 359cdf0e10cSrcweir double g = -1.0/g_bar; 360cdf0e10cSrcweir double f_bar = -1 * g; 361cdf0e10cSrcweir 362cdf0e10cSrcweir double sign_alpha = 1.0; 363cdf0e10cSrcweir double km1mod2; 364cdf0e10cSrcweir bool bHasFound = false; 365cdf0e10cSrcweir k = k + 1; 366cdf0e10cSrcweir do 367cdf0e10cSrcweir { 368cdf0e10cSrcweir km1mod2 = fmod(k-1.0,2.0); 369cdf0e10cSrcweir m_bar=(2.0*km1mod2) * f_bar; 370cdf0e10cSrcweir if (km1mod2 == 0.0) 371cdf0e10cSrcweir alpha = 0.0; 372cdf0e10cSrcweir else 373cdf0e10cSrcweir { 374cdf0e10cSrcweir alpha = sign_alpha * (4.0/k); 375cdf0e10cSrcweir sign_alpha = -sign_alpha; 376cdf0e10cSrcweir } 377cdf0e10cSrcweir g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u; 378cdf0e10cSrcweir g_bar = m_bar - (2.0*k)/fX + g; 379cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar; 380cdf0e10cSrcweir u = u+delta_u; 381cdf0e10cSrcweir g = -1.0 / g_bar; 382cdf0e10cSrcweir f_bar = f_bar*g; 383cdf0e10cSrcweir bHasFound = (fabs(delta_u)<=fabs(u)*epsilon); 384cdf0e10cSrcweir k=k+1; 385cdf0e10cSrcweir } 386cdf0e10cSrcweir while (!bHasFound && k<fMaxIteration); 387cdf0e10cSrcweir if (bHasFound) 388cdf0e10cSrcweir return u*f_2_DIV_PI; 389cdf0e10cSrcweir else 390cdf0e10cSrcweir throw NoConvergenceException(); // not likely to happen 391cdf0e10cSrcweir } 392cdf0e10cSrcweir 393cdf0e10cSrcweir // See #i31656# for a commented version of this implementation, attachment #desc6 394cdf0e10cSrcweir // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt 395cdf0e10cSrcweir double Bessely1( double fX ) throw( IllegalArgumentException, NoConvergenceException ) 396cdf0e10cSrcweir { 397cdf0e10cSrcweir if (fX <= 0) 398cdf0e10cSrcweir throw IllegalArgumentException(); 399cdf0e10cSrcweir const double fMaxIteration = 9000000.0; // should not be reached 400cdf0e10cSrcweir if (fX > 5.0e+6) // iteration is not considerable better then approximation 401cdf0e10cSrcweir return - sqrt(1/f_PI/fX) 402cdf0e10cSrcweir *(rtl::math::sin(fX)+rtl::math::cos(fX)); 403cdf0e10cSrcweir const double epsilon = 1.0e-15; 404cdf0e10cSrcweir const double EulerGamma = 0.57721566490153286060; 405cdf0e10cSrcweir double alpha = 1.0/fX; 406cdf0e10cSrcweir double f_bar = -1.0; 407cdf0e10cSrcweir double g = 0.0; 408cdf0e10cSrcweir double u = alpha; 409cdf0e10cSrcweir double k = 1.0; 410cdf0e10cSrcweir double m_bar = 0.0; 411cdf0e10cSrcweir alpha = 1.0 - EulerGamma - log(fX/2.0); 412cdf0e10cSrcweir double g_bar_delta_u = -alpha; 413cdf0e10cSrcweir double g_bar = -2.0 / fX; 414cdf0e10cSrcweir double delta_u = g_bar_delta_u / g_bar; 415cdf0e10cSrcweir u = u + delta_u; 416cdf0e10cSrcweir g = -1.0/g_bar; 417cdf0e10cSrcweir f_bar = f_bar * g; 418cdf0e10cSrcweir double sign_alpha = -1.0; 419cdf0e10cSrcweir double km1mod2; //will be (k-1) mod 2 420cdf0e10cSrcweir double q; // will be (k-1) div 2 421cdf0e10cSrcweir bool bHasFound = false; 422cdf0e10cSrcweir k = k + 1.0; 423cdf0e10cSrcweir do 424cdf0e10cSrcweir { 425cdf0e10cSrcweir km1mod2 = fmod(k-1.0,2.0); 426cdf0e10cSrcweir m_bar=(2.0*km1mod2) * f_bar; 427cdf0e10cSrcweir q = (k-1.0)/2.0; 428cdf0e10cSrcweir if (km1mod2 == 0.0) // k is odd 429cdf0e10cSrcweir { 430cdf0e10cSrcweir alpha = sign_alpha * (1.0/q + 1.0/(q+1.0)); 431cdf0e10cSrcweir sign_alpha = -sign_alpha; 432cdf0e10cSrcweir } 433cdf0e10cSrcweir else 434cdf0e10cSrcweir alpha = 0.0; 435cdf0e10cSrcweir g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u; 436cdf0e10cSrcweir g_bar = m_bar - (2.0*k)/fX + g; 437cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar; 438cdf0e10cSrcweir u = u+delta_u; 439cdf0e10cSrcweir g = -1.0 / g_bar; 440cdf0e10cSrcweir f_bar = f_bar*g; 441cdf0e10cSrcweir bHasFound = (fabs(delta_u)<=fabs(u)*epsilon); 442cdf0e10cSrcweir k=k+1; 443cdf0e10cSrcweir } 444cdf0e10cSrcweir while (!bHasFound && k<fMaxIteration); 445cdf0e10cSrcweir if (bHasFound) 446cdf0e10cSrcweir return -u*2.0/f_PI; 447cdf0e10cSrcweir else 448cdf0e10cSrcweir throw NoConvergenceException(); 449cdf0e10cSrcweir } 450cdf0e10cSrcweir 451cdf0e10cSrcweir double BesselY( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException ) 452cdf0e10cSrcweir { 453cdf0e10cSrcweir switch( nOrder ) 454cdf0e10cSrcweir { 455cdf0e10cSrcweir case 0: return Bessely0( fNum ); 456cdf0e10cSrcweir case 1: return Bessely1( fNum ); 457cdf0e10cSrcweir default: 458cdf0e10cSrcweir { 459cdf0e10cSrcweir double fByp; 460cdf0e10cSrcweir 461cdf0e10cSrcweir double fTox = 2.0 / fNum; 462cdf0e10cSrcweir double fBym = Bessely0( fNum ); 463cdf0e10cSrcweir double fBy = Bessely1( fNum ); 464cdf0e10cSrcweir 465cdf0e10cSrcweir for( sal_Int32 n = 1 ; n < nOrder ; n++ ) 466cdf0e10cSrcweir { 467cdf0e10cSrcweir fByp = double( n ) * fTox * fBy - fBym; 468cdf0e10cSrcweir fBym = fBy; 469cdf0e10cSrcweir fBy = fByp; 470cdf0e10cSrcweir } 471cdf0e10cSrcweir 472cdf0e10cSrcweir return fBy; 473cdf0e10cSrcweir } 474cdf0e10cSrcweir } 475cdf0e10cSrcweir } 476cdf0e10cSrcweir 477cdf0e10cSrcweir // ============================================================================ 478cdf0e10cSrcweir 479cdf0e10cSrcweir } // namespace analysis 480cdf0e10cSrcweir } // namespace sca 481cdf0e10cSrcweir 482