1<?xml version="1.0" encoding="UTF-8"?>
2
3
4<!--***********************************************************
5 *
6 * Licensed to the Apache Software Foundation (ASF) under one
7 * or more contributor license agreements.  See the NOTICE file
8 * distributed with this work for additional information
9 * regarding copyright ownership.  The ASF licenses this file
10 * to you under the Apache License, Version 2.0 (the
11 * "License"); you may not use this file except in compliance
12 * with the License.  You may obtain a copy of the License at
13 *
14 *   http://www.apache.org/licenses/LICENSE-2.0
15 *
16 * Unless required by applicable law or agreed to in writing,
17 * software distributed under the License is distributed on an
18 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
19 * KIND, either express or implied.  See the License for the
20 * specific language governing permissions and limitations
21 * under the License.
22 *
23 ***********************************************************-->
24
25
26
27<helpdocument version="1.0">
28<meta>
29<topic id="textsbasicshared03080102xml" indexer="include" status="PUBLISH">
30<title id="tit" xml-lang="en-US">Cos Function [Runtime]</title>
31<filename>/text/sbasic/shared/03080102.xhp</filename>
32</topic>
33<history>
34<created date="2003-10-31T00:00:00">Sun Microsystems, Inc.</created>
35<lastedited date="2004-08-24T11:09:53">converted from old format - fpe</lastedited>
36</history>
37</meta>
38<body>
39<section id="cos">
40<bookmark xml-lang="en-US" branch="index" id="bm_id3154923"><bookmark_value>Cos function</bookmark_value>
41</bookmark>
42<paragraph role="heading" id="hd_id3154923" xml-lang="en-US" level="1" l10n="U" oldref="1"><link href="text/sbasic/shared/03080102.xhp" name="Cos Function [Runtime]">Cos Function [Runtime]</link></paragraph>
43<paragraph role="paragraph" id="par_id3159413" xml-lang="en-US" l10n="U" oldref="2">Calculates the cosine of an angle. The angle is specified in radians. The result lies between -1 and 1.</paragraph>
44</section>
45<paragraph role="paragraph" id="par_id3150358" xml-lang="en-US" l10n="U" oldref="3">Using the angle Alpha, the Cos-Function calculates the ratio of the length of the side that is adjacent to the angle, divided by the length of the hypotenuse in a right-angled triangle.</paragraph>
46<paragraph role="paragraph" id="par_id3154141" xml-lang="en-US" l10n="U" oldref="4">Cos(Alpha) = Adjacent/Hypotenuse</paragraph>
47<paragraph role="heading" id="hd_id3154125" xml-lang="en-US" level="2" l10n="U" oldref="5">Syntax:</paragraph>
48<paragraph role="paragraph" id="par_id3145172" xml-lang="en-US" l10n="U" oldref="6">Cos (Number)</paragraph>
49<paragraph role="heading" id="hd_id3156214" xml-lang="en-US" level="2" l10n="U" oldref="7">Return value:</paragraph>
50<paragraph role="paragraph" id="par_id3150449" xml-lang="en-US" l10n="U" oldref="8">Double</paragraph>
51<paragraph role="heading" id="hd_id3153969" xml-lang="en-US" level="2" l10n="U" oldref="9">Parameters:</paragraph>
52<paragraph role="paragraph" id="par_id3153770" xml-lang="en-US" l10n="U" oldref="10">
53<emph>Number:</emph> Numeric expression that specifies an angle in radians that you want to calculate the cosine for.</paragraph>
54<paragraph role="paragraph" id="par_id3145749" xml-lang="en-US" l10n="U" oldref="11">To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.</paragraph>
55<paragraph role="paragraph" id="par_id3149664" xml-lang="en-US" l10n="U" oldref="12">degree=(radian*180)/pi</paragraph>
56<paragraph role="paragraph" id="par_id3146985" xml-lang="en-US" l10n="U" oldref="13">radian=(degree*pi)/180</paragraph>
57<paragraph role="paragraph" id="par_id3152885" xml-lang="en-US" l10n="U" oldref="14">Pi is here the fixed circle constant with the rounded value 3.14159...</paragraph>
58<embed href="text/sbasic/shared/00000003.xhp#errorcode"/>
59<embed href="text/sbasic/shared/00000003.xhp#err5"/>
60<paragraph role="heading" id="hd_id3153951" xml-lang="en-US" level="2" l10n="U" oldref="15">Example:</paragraph>
61<paragraph role="paragraph" id="par_id3155855" xml-lang="en-US" l10n="U" oldref="16">REM The following example allows for a right-angled triangle the input of</paragraph>
62<paragraph role="paragraph" id="par_id3149484" xml-lang="en-US" l10n="U" oldref="17">REM secant and angle (in degrees) and calculates the length of the hypotenuse:</paragraph>
63<paragraph role="paragraph" id="par_id3147428" xml-lang="en-US" l10n="U" oldref="18">Sub ExampleCosinus</paragraph>
64<paragraph role="paragraph" id="par_id3150010" xml-lang="en-US" l10n="U" oldref="19">REM rounded Pi = 3.14159</paragraph>
65<paragraph role="paragraph" id="par_id3149959" xml-lang="en-US" l10n="U" oldref="20">Dim d1 as Double, dAngle as Double</paragraph>
66<paragraph role="paragraph" id="par_id3144764" xml-lang="en-US" l10n="U" oldref="21">d1 = InputBox$ (""Enter the length of the adjacent side: ","Adjacent")</paragraph>
67<paragraph role="paragraph" id="par_id3154491" xml-lang="en-US" l10n="U" oldref="22">dAngle = InputBox$ ("Enter the angle Alpha (in degrees): ","Alpha")</paragraph>
68<paragraph role="paragraph" id="par_id3151074" xml-lang="en-US" l10n="U" oldref="23">Print "The length of the hypothenuse is"; (d1 / cos (dAngle * Pi / 180))</paragraph>
69<paragraph role="paragraph" id="par_id3149583" xml-lang="en-US" l10n="U" oldref="24">End Sub</paragraph>
70</body>
71</helpdocument>
72