1 /**************************************************************
2  *
3  * Licensed to the Apache Software Foundation (ASF) under one
4  * or more contributor license agreements.  See the NOTICE file
5  * distributed with this work for additional information
6  * regarding copyright ownership.  The ASF licenses this file
7  * to you under the Apache License, Version 2.0 (the
8  * "License"); you may not use this file except in compliance
9  * with the License.  You may obtain a copy of the License at
10  *
11  *   http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing,
14  * software distributed under the License is distributed on an
15  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  * KIND, either express or implied.  See the License for the
17  * specific language governing permissions and limitations
18  * under the License.
19  *
20  *************************************************************/
21 
22 
23 
24 // MARKER(update_precomp.py): autogen include statement, do not remove
25 #include "precompiled_chart2.hxx"
26 #include "ExponentialRegressionCurveCalculator.hxx"
27 #include "macros.hxx"
28 #include "RegressionCalculationHelper.hxx"
29 
30 #include <rtl/math.hxx>
31 #include <rtl/ustrbuf.hxx>
32 
33 using namespace ::com::sun::star;
34 
35 using ::rtl::OUString;
36 using ::rtl::OUStringBuffer;
37 
38 namespace chart
39 {
40 
ExponentialRegressionCurveCalculator()41 ExponentialRegressionCurveCalculator::ExponentialRegressionCurveCalculator() :
42         m_fLogSlope( 0.0 ),
43         m_fLogIntercept( 0.0 )
44 {
45     ::rtl::math::setNan( & m_fLogSlope );
46     ::rtl::math::setNan( & m_fLogIntercept );
47 }
48 
~ExponentialRegressionCurveCalculator()49 ExponentialRegressionCurveCalculator::~ExponentialRegressionCurveCalculator()
50 {}
51 
52 // ____ XRegressionCurveCalculator ____
recalculateRegression(const uno::Sequence<double> & aXValues,const uno::Sequence<double> & aYValues)53 void SAL_CALL ExponentialRegressionCurveCalculator::recalculateRegression(
54     const uno::Sequence< double >& aXValues,
55     const uno::Sequence< double >& aYValues )
56     throw (uno::RuntimeException)
57 {
58     RegressionCalculationHelper::tDoubleVectorPair aValues(
59         RegressionCalculationHelper::cleanup(
60             aXValues, aYValues,
61             RegressionCalculationHelper::isValidAndYPositive()));
62 
63     const size_t nMax = aValues.first.size();
64     if( nMax == 0 )
65     {
66         ::rtl::math::setNan( & m_fLogSlope );
67         ::rtl::math::setNan( & m_fLogIntercept );
68         ::rtl::math::setNan( & m_fCorrelationCoeffitient );// actual it is coefficient of determination
69         return;
70     }
71 
72     double fAverageX = 0.0, fAverageY = 0.0;
73     size_t i = 0;
74     for( i = 0; i < nMax; ++i )
75     {
76         fAverageX += aValues.first[i];
77         fAverageY += log( aValues.second[i] );
78     }
79 
80     const double fN = static_cast< double >( nMax );
81     fAverageX /= fN;
82     fAverageY /= fN;
83 
84     double fQx = 0.0, fQy = 0.0, fQxy = 0.0;
85     for( i = 0; i < nMax; ++i )
86     {
87         double fDeltaX = aValues.first[i] - fAverageX;
88         double fDeltaY = log( aValues.second[i] ) - fAverageY;
89 
90         fQx  += fDeltaX * fDeltaX;
91         fQy  += fDeltaY * fDeltaY;
92         fQxy += fDeltaX * fDeltaY;
93     }
94 
95     m_fLogSlope = fQxy / fQx;
96     m_fLogIntercept = fAverageY - m_fLogSlope * fAverageX;
97     m_fCorrelationCoeffitient = fQxy / sqrt( fQx * fQy );
98 
99 }
100 
getCurveValue(double x)101 double SAL_CALL ExponentialRegressionCurveCalculator::getCurveValue( double x )
102     throw (lang::IllegalArgumentException,
103            uno::RuntimeException)
104 {
105     double fResult;
106     ::rtl::math::setNan( & fResult );
107 
108     if( ! ( ::rtl::math::isNan( m_fLogSlope ) ||
109             ::rtl::math::isNan( m_fLogIntercept )))
110     {
111         fResult = exp(m_fLogIntercept + x * m_fLogSlope);
112     }
113 
114     return fResult;
115 }
116 
getCurveValues(double min,double max,::sal_Int32 nPointCount,const uno::Reference<chart2::XScaling> & xScalingX,const uno::Reference<chart2::XScaling> & xScalingY,::sal_Bool bMaySkipPointsInCalculation)117 uno::Sequence< geometry::RealPoint2D > SAL_CALL ExponentialRegressionCurveCalculator::getCurveValues(
118     double min, double max, ::sal_Int32 nPointCount,
119     const uno::Reference< chart2::XScaling >& xScalingX,
120     const uno::Reference< chart2::XScaling >& xScalingY,
121     ::sal_Bool bMaySkipPointsInCalculation )
122     throw (lang::IllegalArgumentException,
123            uno::RuntimeException)
124 {
125     if( bMaySkipPointsInCalculation &&
126         isLinearScaling( xScalingX ) &&
127         isLogarithmicScaling( xScalingY ))
128     {
129         // optimize result
130         uno::Sequence< geometry::RealPoint2D > aResult( 2 );
131         aResult[0].X = min;
132         aResult[0].Y = this->getCurveValue( min );
133         aResult[1].X = max;
134         aResult[1].Y = this->getCurveValue( max );
135 
136         return aResult;
137     }
138 
139     return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation );
140 }
141 
142 
ImplGetRepresentation(const uno::Reference<util::XNumberFormatter> & xNumFormatter,::sal_Int32 nNumberFormatKey) const143 OUString ExponentialRegressionCurveCalculator::ImplGetRepresentation(
144     const uno::Reference< util::XNumberFormatter >& xNumFormatter,
145     ::sal_Int32 nNumberFormatKey ) const
146 {
147     double fIntercept = exp(m_fLogIntercept);
148     double fSlope = exp(m_fLogSlope);
149     bool bHasSlope = !rtl::math::approxEqual( fSlope, 1.0 );
150     bool bHasIntercept = !rtl::math::approxEqual( fIntercept, 1.0 );
151 
152     OUStringBuffer aBuf( C2U( "f(x) = " ));
153 
154     if ( fIntercept == 0.0)
155     {
156         // underflow, a true zero is impossible
157         aBuf.append( C2U( "exp( " ));
158         aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept) );
159         aBuf.append( (m_fLogSlope < 0.0) ? C2U( " - " ) : C2U( " + " ));
160         aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope)) );
161         aBuf.append( C2U( " x )" ));
162     }
163     else
164     {
165         if (bHasIntercept)
166         {
167             aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fIntercept) );
168             aBuf.append( C2U( " exp( " ));
169             aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogSlope) );
170             aBuf.append( C2U( " x )" ));
171         }
172         else
173         {
174             // show logarithmic output, if intercept and slope both are near one
175             // otherwise drop output of intercept, which is 1 here
176             aBuf.append( C2U( " exp( " ));
177             if (!bHasSlope)
178             {
179                 aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept) );
180                 aBuf.append( (m_fLogSlope < 0.0) ? C2U( " - " ) : C2U( " + " ));
181                 aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope)) );
182             }
183             else
184             {
185                 aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogSlope) );
186             }
187             aBuf.append( C2U( " x )" ));
188         }
189     }
190 
191     return aBuf.makeStringAndClear();
192 }
193 
194 } //  namespace chart
195